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Abstract
The e-BH procedure is an e-value-based multiple testing procedure that provably controls the false

discovery rate (FDR) under any dependence structure between the e-values. Despite this appealing
theoretical FDR control guarantee, the e-BH procedure often suffers from low power in practice.
In this paper, we propose a general framework that boosts the power of e-BH without sacrificing
its FDR control under arbitrary dependence. This is achieved by the technique of conditional cal-
ibration, where we take as input the e-values and calibrate them to be a set of “boosted e-values”
that are guaranteed to be no less—and are often more—powerful than the original ones. Our gen-
eral framework is explicitly instantiated in three classes of multiple testing problems: (1) testing
under parametric models, (2) conditional independence testing under the model-X setting, and (3)
model-free conformalized selection. Extensive numerical experiments show that our proposed method
significantly improves the power of e-BH while continuing to control the FDR. We also demonstrate
the effectiveness of our method through application to the task of identifying individuals with positive
treatment effects in an observational study.

1 Introduction
We study the problem of testing m hypotheses simultaneously while controlling the false discovery rate
(FDR) (Benjamini and Hochberg, 1995). For this task, classical methods (e.g., Benjamini and Hochberg
(1995); Benjamini and Yekutieli (2001); Storey (2002)) associate each hypothesis with a p-value and
decide on which subset of hypotheses to reject based on these p-values. Recently, the notion of e-values
has been proposed for quantifying evidence against the null hypothesis in place of p-values (Shafer et al.,
2011; Grünwald et al., 2024; Vovk and Wang, 2021; Grünwald, 2023). To be concrete, an e-value for a
null hypothesis H0 is the realization of an e-variable E, which obeys

E ≥ 0 and EH0
[E] ≤ 1.

In contrast, we recall that a p-value for H0 is the realization of a p-variable P , such that

PH0
(P ≤ t) ≤ t, for all t ∈ (0, 1).

In what follows, we will not distinguish between e-values (resp. p-values) and e-variables (resp. p-
variables) when the context is clear. Per their definitions, both e-values and p-values are summaries
of evidence against H0, where we reject H0 for small p-values or large e-values. Compared with the
p-values, several properties of e-values make them attractive for hypothesis testing. For example, the
e-value allows the experimenter to adaptively decide whether to collect new evidence or to stop the exper-
iment; it is also handy for combining evidence from multiple sources (see Section 2 for more discussion).

When it comes to multiple testing, Wang and Ramdas (2022) propose a simple and elegant e-value-
based procedure, called the e-BH procedure, that provably controls the FDR at the target level α under
unknown arbitrary dependence among the e-values. This is a rather surprising result, since for the p-
value-based procedures, the FDR control is only guaranteed under special dependency strucures — e.g.,
when the p-values are independent or positively correlated — unless one is willing to tolerate an inflated
FDR level. Despite this theoretical appeal, the e-BH procedure is observed to be conservative in practice,
often achieving an FDR much lower than the target level, which greatly hinders its wide application. It
is thus of great interest to improve the power of e-BH without sacrificing the FDR control guarantee.
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1.1 A peek at our contribution
In this paper, we propose a general framework that boosts the power of e-BH for a wide class of multiple
testing problems when partial information on the dependence structure is accessible. To set the stage,
consider m null hypotheses H1, H2, . . . ,Hm, where the subset of null hypotheses which are true is denoted
by H0. For each j ∈ [m] := {1, 2, . . . ,m}, Hj is associated with an e-value ej . Applying the e-BH
procedure to e := {e1, e2, . . . , em}, one obtains a rejection set R(e) ⊆ [m]. The set R(e) is guaranteed
to control the FDR, whose formal definition is as follows:

FDR = E
[∑

j∈H0
1{j ∈ R(e)}

|R(e)| ∨ 1

]
,

where | · | denotes the cardinality of a set and a ∨ b = max(a, b) for any a, b ∈ R. To identify the
source of conservativeness in e-BH, we follow Fithian and Lei (2022) and decompose the FDR into the
“contribution” of each null hypothesis:

FDR =
∑
j∈H0

FDRj :=
∑
j∈H0

E
[
1{j ∈ R(e)}
|R(e)| ∨ 1

]
.

Intuitively, if a multiple testing procedure is tight—that is, it uses up all its FDR bugdet—then FDRj

should be close to α/m (or other budget bj that adds up to α given additional information). As we shall
see later, FDRj ’s are often much smaller than α/m for e-BH, leading to a loss of power.

At a high level, our proposal is to boost the e-BH procedure by filling these gaps, which requires
identifying a sufficient statistic Sj for each j ∈ [m], conditioning on which we can evaluate the distribution
of FDRj under the null. Operationally, our proposed method takes as input the e-values e and returns
a set of boosted e-values eb := {eb1, eb2, . . . , ebm} that are at least as powerful as the original e-values
(theoretically and practically); it then applies the e-BH procedure to eb to obtain a rejection set R(eb),
which improves upon R(e) in terms of power, while maintaining the FDR control guarantees.

Our second major contribution is to explicitly instantiate our general framework in three classes of
multiple testing problems: (1) testing under a class of parametric models, (2) conditional independence
testing in the model-X setting, and (3) model-free comformalized selection. For each problem, we identify
the sufficient statistics and provide a concrete way to boost the e-values. As a preview, Figure 1 shows
the empirical power improvement of our proposed method over the e-BH procedure for a selection of
experiments; through all of this, it continues to theoretically and empirically control the false discovery
rate (FDR) at a preset level, In the simulation studies of Sections 4, 5, and 6, we find that power
improvement occurs over all settings, not just the specific ones chosen here.

Organization of the paper. We introduce the background on e-values and discuss related literature in
Section 2. Our main framework for boosting e-values is presented in Section 3. Sections 4, 5 and 6 contain
an instantiation of our methods in testing under parametric models, conditional independence testing in
the model-X setting, and model-free conformalized selection, respectively. These three sections are rather
stand-alone—readers who are interested in a specific problem can jump directly to the corresponding
section after reading the opening sections. Section 7 presents the results from real data analysis. We
conclude the paper with a discussion in Section 8.

2 Background

2.1 E-values
The notion of e-values includes many commonly used statistics, such as betting scores, Bayes factors,
likelihood ratios, and stopped martingales (e.g., Wasserman et al. (2020); Shafer (2021); Howard et al.
(2021); Grünwald (2023); Waudby-Smith and Ramdas (2024)). As mentioned earlier, we reject the null
hypothesis H0 when the e-value is large: for any α ∈ (0, 1), rejecting H0 when e ≥ 1/α yields a level α
test as a consequence of Markov’s inequality:

PH0
(e ≥ 1/α) = α · EH0

[e] ≤ α.
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Figure 1: A selection of simulation results from each of the three instantiations of our proposed method,
e-BH-CC. The three problem instances are (1) one-sided z-testing using likelihood ratio e-values; (2)
conditional independence testing using derandomized knockoffs e-values; and (3) weighted conformal
outlier detection using conformal e-values. The plots above show average power and false discovery
proportion (FDP) curves over 1000, 100, and 1000 replications, respectively. The dashed gray lines
correspond to the relevant baselines (if they exist), and the target FDR level is illustrated by the short-
dashed orange line. Shading represents error bars, when they are deemed necessary.

There is also a close connection between the e-value and the p-value: let e be an e-value for a null
hypothesis H0, then p = 1/e is a p-value for H0 by Markov’s inequality,1 since

PH0
(p ≤ t) = PH0

(e ≥ 1/t) ≤ t · EH0
[e] ≤ t, for any t ∈ (0, 1).

Conversely, a p-value p for H0 can be transformed into an e-value by a “calibrator” (Shafer et al., 2011),
defined as a decreasing function f : [0, 1] 7→ [0,∞), such that∫ 1

0

f(t) dt = 1.

For example, we can take f(t) = λtλ−1 for some λ ∈ (0, 1) to be the calibrator (Shafer, 2021; Vovk and
Wang, 2021).

Prior works (Shafer, 2021; Grünwald et al., 2024; Wang and Ramdas, 2022; Grünwald, 2023; Ramdas
et al., 2023) have provided fruitful discussions on when one would prefer e-values over p-values, and we
refer the readers to them for a comprehensive review. Here, to build intuition and help motivate our
examples, we describe two scenarios where e-values are particularly useful.

Imagine a scientist is conducting experiments to test a hypothesis H0. After collecting the data
and performing the data analysis, she obtains an e-value e1 that fails to reject H0; having seen e1, she
decides to collect the next batch of data and obtain another e-value e2. The scientist can then combine
the evidence from e1 and e2 by taking e = e1e2, which is a valid e-value as long as EH0 [e2 | e1] ≤ 1. In
contrast, it is not clear how to combine p-values efficiently in such a sequential experiment setting.

Consider another example where two labs are interested testing the same hypothesis H0, and their
data can be dependent in unknown ways (there can be overlapping cohort in the two studies). Each lab
obtains an e-value, e1 and e2. To combine the evidence from both labs, one can simply take e = 1

2 (e1+e2),
which is still a valid e-value since EH0

[e] = 1
2 (EH0

[e1]+EH0
[e2]) ≤ 1. The same argument, however, does

not hold for p-values.
1We use the term “p-value” a bit loosely since we allow the p-value to be larger than 1. One can always transform p

into a strict p-value by taking min(p, 1).
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2.2 The e-BH procedure
For m null hypotheses H1, H2, . . . ,Hm and their associated e-values e1, e2, . . . , em, let e(1), e(2), . . . , e(m)

denote the ordered e-values in an descending order. The e-BH procedure (Wang and Ramdas, 2022) at
level α rejects the hypotheses corresponding to the k∗ largest e-values, where

k∗ = max
{
k ∈ [m] : e(k) ≥

m

αk

}
,

with the convention max∅ = 0. To understand why e-BH is conservative, it is helpful to go through the
proof of its FDR control. Let Re-BH denote the e-BH rejection set. It can be checked that j ∈ Re-BH if
and only if ej ≥ m

α|Re-BH| , so we can write the FDR of e-BH as

FDR =
∑
j∈H0

E
[
1{ej ≥ m

α|Re-BH|}
|Re-BH| ∨ 1

]
(i)
≤

∑
j∈H0

E
[
ej

α|Re-BH|
m

|Re-BH| ∨ 1

]
≤ α

m

∑
j∈H0

E[ej ]
(ii)
≤ α, (1)

where step (i) follows from the deterministic inequality 1{X ≥ t} ≤ X/t for any t > 0, and step (ii) is due
to the definition of e-values. Note that the inequality in (i) is tight if and only if ej ∈ {0, m

α|Re-BH|}, which
is typically not the case. Step (i) therefore constitutes a major source of the gap between the realized
FDR of e-BH and the target level α. The main idea of our proposal, to be introduced in Section 3, is
to identify and close this gap by leveraging the distribution of e-values conditional on certain sufficient
statistics.

It is worth mentioning that Wang and Ramdas (2022) also provide a method for boosting the e-values
by leveraging available information on their marginal distributions.2 Specifically, the method transforms
an e-value ej into e′j = bjej for some boosting factor bj ≥ 1, and then applies the e-BH procedure to e′js.
The boosting factor bj is chosen to be the largest b ≥ 1 such that E

[
T (αbej)

]
≤ α, where T (x) is the

largest element in {1,m/(m−1), . . . ,m/2,m} that is no greater than x. For example, when ej =
1
2p

−1/2
j ,

with pj being a uniform random variable on [0, 1], one can take bj = (2/α)1/2. Since this boosting scheme
mainly leverages the marginal distribution of e-values, we refer to it as the marginal boosting scheme. As
is often observed in practice, the marginal boosting scheme is not sufficient for closing the gap caused
by step (i) in Equation (1).

Finally, we note that for the purpose of FDR control, it suffices to require that the sum of expectation
of null e-values is bounded by m (step (ii) in (1)). We call such e-values generalized e-values, whose formal
definition is given below.
Definition 1 (Generalized e-values). The non-negative random variables e1, e2, . . . , em are called gen-
eralized e-values if

∑
j∈H0

E[ej ] ≤ m.
Applying the e-BH procedure to generalized e-values yields a level-α FDR control (Wang and Ramdas,

2022), and this can easily be seen by noting that step (ii) in Equation (1) still holds for generalized e-
values. We will see examples of such generalized e-values later.

2.3 Related work
There has been a growing literature on the topic of e-values, including the interpretation and properties
of e-values (Shafer et al., 2011; Shafer, 2021; Vovk and Wang, 2021, 2023; Grünwald, 2023), the existence
and construction of powerful e-values (Wasserman et al., 2020; Grünwald et al., 2024; Zhang et al., 2023;
Larsson et al., 2024), and the use of e-values in various statistical problems (Howard et al., 2020, 2021;
Waudby-Smith and Ramdas, 2024; Vladimir and Wang, 2024; Wang et al., 2022; Waudby-Smith et al.,
2022). When it comes to multiple testing, as mentioned earlier, Wang and Ramdas (2022) propose
an e-value-based procedure for testing multiple hypotheses which controls the FDR under arbitrary
dependence. Ignatiadis et al. (2023) study the multiple testing problem when both p-values and e-values
are available. Xu and Ramdas (2023b) consider using the e-values for multiple testing in the online
setting, while Xu et al. (2022) concerns themselves with building post-selection confidence intervals by
inverting the e-values.

It is worth noting that two recent papers (Ramdas and Manole, 2023; Xu and Ramdas, 2023a) discuss
the use of external randomness for boosting the power of e-values, where the former focuses on testing

2Wang and Ramdas (2022) also provides a more powerful boosting scheme when the p-values are positively dependent
on a subset (PRDS). Since the PRDS condition already ensures the FDR control of the BH procedure, in this paper we
choose to focus primarily on the more general cases beyond the PRDS condition.
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a single hypothesis and the latter considers multiple testing. For example, one could replace ej with
ẽj := ej/Uj , for Uj ∼ Unif([0, 1]) that is independent of everything else, and then apply the e-BH
procedure to the ẽj ’s, still guaranteeing FDR control. Since Uj < 1, such an approach indeed improves
the power. But the external randomness can potentially hinder the reproducibility of the results (the
procedure can be quite sensitive to the realization of the Uj ’s and different runs of the algorithm can
yield different selections), and could encourage “hacking” the data to obtain a desired result (practitioners
can repeatedly sample the Uj ’s until getting significant results). Our proposed method, in contrast, is
deterministic in principle (assuming sufficient computational resources) and is effectively stable across
different runs of the algorithm in practice.

There is a substantial line of works on multiple testing with FDR control. This problem is first studied
by Benjamini and Hochberg (1995), in which they also propose the Benjamini-Hochberg (BH) procedure
that operates on p-values. The BH procedure is only known to control the FDR with independent or
positively correlated p-values. Otherwise, a severe correction is needed to ensure the FDR control (Ben-
jamini and Yekutieli, 2001). Subsequent works have investigated the asymptotic FDR control (Genovese
and Wasserman, 2004; Storey et al., 2004; Ferreira and Zwinderman, 2006; Farcomeni, 2007). The recent
work of Chi et al. (2022) discusses the FDR control of the BH procedure under negative dependence, pro-
viding better correction factors than in the arbitrary dependence case. Sarkar (2023) develops a variant
of the BH procedure the controls the FDR when testing multivariate normal means against two-sided
alternatives. Our work draws inspiration from Fithian and Lei (2022). The authors proposes the dBH
procedure that uses conditional calibration to modify the p-value threshold in the BH procedure, thereby
achieving finite-sample FDR control, whereas we use conditional calibration to boost the power of the
e-BH procedure. We will provide a detailed discussion on the connnection between their method and
ours in Section 3.

Beyond the p-value-based mulitple testing procedure, Barber and Candès (2015); Candès et al. (2018)
propose the knockoff procedure that controls the FDR by adding “knockoff” variables to the regression.
It is shown that the knockoff-based methods also have e-value interpretations (Ren and Barber, 2024);
based on this observation, we apply our framework to improving the power of the knockoff method in
Section 5.

3 Boosting e-BH using conditional calibration
Given a collection of e-values e = (e1, . . . , em) corresponding to null hypotheses H1, . . . ,Hm, our method
returns a new collection of e-values eb = (eb1, . . . , e

b
m) through a technique called conditional calibration

(CC) (Fithian and Lei, 2022). Originally proposed as a way to produce separately-calibrated thresholds
for p-values to return an FDR-controlling rejection set, conditional calibration plays a different role in our
procedure—instead of calibrating thresholds for rejection, we boost e-values to more powerful versions of
themselves while retaining e-value validity. Thus, we can run e-BH on these boosted e-values to attain a
rejection set which still controls the FDR at the pre-specified level α ∈ (0, 1). Furthermore, the rejection
set from the boosted method dominates that of e-BH in terms of power.

Suppose we can identify for each j ∈ [m] a sufficient statistic Sj such that we know the conditional
joint distribution e | Sj under the null hypothesis Hj . Denote R(e) as the rejection set returned by the
e-BH procedure on e at level α ∈ (0, 1). For each j ∈ [m], define R̂j(e) := R(e) ∪ {j} and subsequently
define the function

ϕj(c;Sj) := E

m

α
·
1
{
cẽj ≥ m

α|R̂j(ẽ)|

}
|R̂j(ẽ)|

− ẽj

∣∣∣∣∣Sj

 (2)

where ẽ = (ẽ1, . . . , ẽm) follows the conditional distribution e | Sj . Noting that ϕj(c;Sj) is monotonically
non-decreasing in c, we can define the associated critical value

ĉj := sup{c : ϕj(c;Sj) ≤ 0}. (3)

Since the function ϕj(c;Sj) is not necessarily continuous in c, it is possible that ϕj(ĉj ;Sj) > 0. We then
construct our new collection of e-values slightly differently depending on the value of ϕj(ĉj ;Sj):

ebj =


m

α|R̂j(e)|
· 1

{
ĉjej ≥ m

α|R̂j(e)|

}
if ϕj(ĉj ;Sj) ≤ 0,

m

α|R̂j(e)|
· 1

{
ĉjej >

m

α|R̂j(e)|

}
if ϕj(ĉj ;Sj) > 0.

(4)
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We formalize in Theorem 1 that the boosted e-values (eb1, . . . , e
b
m) are valid e-values, and provide its

proof in Appendix A.1.
Theorem 1. When (e1, . . . , em) are (resp. generalized) e-values, the boosted e-value eb = (eb1, . . . , e

b
m)

defined in (4) are (resp. generalized) e-values.
As a consequence of Theorem 1, the rejection set returned from running e-BH on eb at level α satisfies

FDR control, i.e., FDR[R(eb)] ≤ α. We summarize this procedure, henceforth referred to as e-BH-CC,
in Algorithm 1.
Remark 1. Since (eb1, . . . , e

b
m) are valid (generalized) e-values, applying e-BH on them at any level

αe-BH ∈ (0, 1) yields a rejection set with FDR controlled by αe-BH. In the most general version of e-BH-
CC, we denote the level used in constructing the boosted e-values (the α hyperparameter in (2) and (4))
as αCC, and allow αCC to differ from αe-BH. As we shall see shortly, the power improvement of e-BH-CC
is theoretically guaranteed when αCC = αe-BH. In what follows, we will assume that αCC = αe-BH = α
unless otherwise specified.

Algorithm 1: e-BH-CC
Input: e-values e1, e2, . . . , em; sufficient statistics S1, S2, . . . , Sm; target FDR level α.

1 for j ∈ [m] do
2 1. Compute the boosting factor ĉj .
3 2. Construct the boosted e-values ebj according to (4).
4 end
5 Apply e-BH to (eb1, e

b
2, . . . , e

b
m) at level α and obtain the rejection set Re-BH(eb).

Output: the rejection set Re-BH(eb).

The reader might wonder why we describe e-BH-CC as “boosting” e-BH. This is because by con-
structing boosted versions of the e-values and applying e-BH to them, we have created a more powerful
procedure than regular e-BH. Specifically, R(eb) can be interpreted as a rejection set returned by a selec-
tion procedure which improves upon regular e-BH by tightening its FDR control. Notably, the process
described above is deterministic with respect to the original e-values collected—there is no randomness
introduced.

3.1 Power improvement
We previously claimed that the boosted rejection set R(eb) has greater power than R(e). We formalize
the claim as follows:
Theorem 2. Given e-values e = (e1, . . . , em), denote eb = (eb1, . . . , e

b
m) to be the boosted e-values from

conditional calibration defined in (4). Then R(eb) ⊇ R(e), where each rejection set comes from running
the e-BH procedure at the same level α ∈ (0, 1).

Proof of Theorem 2. The claim mainly follows from the fact that ϕj(1;Sj) for each j. To see why, we
invoke the inequality that 1{X ≥ t} ≤ X/t for t > 0 on the indicator inside the function ϕj :

1

{
ẽj ≥

m

α|R̂j(ẽ)|

}
≤ α|R̂j(ẽ)|

m
· ẽj .

Therefore,

ϕj(1;Sj) ≤ E

[
m

α|R̂j(ẽ)|
· α|R̂j(ẽ)|

m
· ẽj − ẽj

∣∣∣∣Sj

]
= 0.

As a result, when ϕj(ĉj ;Sj) ≤ 0, we have ĉj ≥ 1; when ϕj(ĉj ;Sj) > 0, we have ĉj > 1.
We will now show that j ∈ R(e) =⇒ j ∈ R(eb). The case when R(e) is empty is trivial, so we

assume otherwise. For each j ∈ R(e), the containment R̂j(e) ⊇ R(e) actually attains set equality, so

ebj =

{
m

α|R(e)| · 1
{
ĉjej ≥ m

α|R(e)|
}

if ϕj(ĉj ;Sj) ≤ 0,
m

α|R(e)| · 1
{
ĉjej >

m
α|R(e)|

}
if ϕj(ĉj ;Sj) > 0.

Recall that in the case of ϕj(ĉj ;Sj) ≤ 0, ĉj ≥ 1 and in the case of ϕj(ĉj ;Sj) > 0, ĉj > 1. In either
case, the indicator in the above crystallizes to 1 since ej ≥ m

α|R(e)| by virtue of j having been selected
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by e-BH. Therefore, ebj = m
α|R(e)| for each j ∈ R(e). Since there are |R(e)| many such indices, the e-BH

procedure will select the set {ebj : j ∈ R(e)} at the very least, proving the claim.

3.2 Implementing e-BH-CC
To calculate ĉj in (3), we assume access to the conditional expectation ϕj through knowledge of the
distribution e | Sj under Hj . In practice, it is unreasonable to expect an analytical form of ϕj for
anything but the simplest of settings. In that sense, the e-BH-CC procedure we previously outlined
amounts to an oracle algorithm.

Therefore, to design an implementation of e-BH-CC that is much more practical, we will avoid
analytically calculating ϕj(·;Sj) in favor of numerically evaluating it by using i.i.d. resamples from e | Sj .
With these resamples, we can use Monte-Carlo estimation in order to evaluate ϕj(·;Sj) at any point.
However, this introduces a tradeoff between computational cost and accuracy. Considering that, naïvely,
we desire to estimate the critical value of the function, it is not immediately clear how to translate the
ability to resample into an efficient e-BH-CC implementation whose FDR control does not severely and
unpredictably suffer from Monte-Carlo error.

In this subsection, we outline our computationally efficient Monte-Carlo method for impelementing
e-BH-CC, which only requires resamples from e | Sj . In our implementation, we forego estimating the
critical value ĉj and rather evaluate 1{ĉjej ≥ m/(α|R̂j(e)|)} directly, since this determines the value
of ebj . We show that it suffices to evaluate ϕj(·;Sj) at a specific value, which we can Monte-Carlo
estimate using our resamples. By making this simplification, we crucially avoid the issue of finding ĉj .
Our implementation also uses anytime-valid methods to control the MC estimation error in an online
manner, which has methodological and computational benefits to be seen later. This approach takes
inspiration from the work of Luo et al. (2022), which similarly uses conditional calibration to improve
the power of the knockoff filter (Barber and Candès, 2015; Candès et al., 2018). We draw a distinction
with their method, as ours applies in a general multiple testing framework—boosting the power of the
knockoff filter is a specific application of e-BH-CC, as detailed in Section 5.

3.2.1 Evaluating the numerator

As aluded to previously, the only unknown quantity of ebj is the numerator (the denominator is directly
a function of the original e-values). To approach evaluating the numerator, we observe the following
equivalences of events:

when ϕj(ĉj ;Sj) ≤ 0 :

{
ĉjej ≥

m

α|R̂j(e)|

}
⇐⇒

{
ĉj ≥

m

α|R̂j(e)|
/ej

}
⇐⇒ {ϕj(c̃j ;Sj) ≤ 0},

when ϕj(ĉj ;Sj) > 0 :

{
ĉjej >

m

α|R̂j(e)|

}
⇐⇒

{
ĉj >

m

α|R̂j(e)|
/ej

}
⇐⇒ {ϕj(c̃j ;Sj) ≤ 0},

(5)

where c̃j = m

α|R̂j(e)|
/ej . The last event {ϕj(c̃j ;Sj) ≤ 0} may confuse the astute reader, who will recall

that ϕj(c;Sj) is an expression with c inside the conditional expectation. By evaluating ϕj(·;Sj) at the
random c̃j , we mean to evaluate it at the value taken by c̃j , rather than substituting c with c̃j in (2).
This is equivalent to evaluating

E

m

α
·
1
{
( m

α|R̂j(e)|
/ej)ẽj ≥ m

α|R̂j(ẽ)|

}
|R̂j(ẽ)|

− ẽj

∣∣∣∣Sj , e

 (6)

with the expectation over the distribution ẽ | Sj , e. In (6), we can write the resample ẽ = f(Sj , Uj) for
some function f and a uniform ramdom variable Uj that is independent of everything else. From this
representation, we can clearly see that ẽ ⊥⊥ ej | Sj , and the conditional expectation (6) collapses to only
conditioning on Sj . Equations (5) and (6) imply that we can evaluate the numerator by estimating the
conditional mean (given Sj and e) of

m

α
·
1
{
ẽj/ej ≥ |R̂j(e)|/|R̂j(ẽ)|

}
|R̂j(ẽ)|

.
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Assume we have K i.i.d. resamples from e | Sj . From each resample ẽ(k), k ∈ [K], we can compute

Ej,k =
m

α
·
1
{
ẽ
(k)
j /ej ≥ |R̂j(e)|/|R̂j(ẽ

(k))|
}

|R̂j(ẽ(k))|
(7)

thereby giving us K samples

Ej,1, Ej,2, . . . , Ej,K
i.i.d.∼ m

α
·
1
{
ẽj/ej ≥ |R̂j(e)|/|R̂j(ẽ)|

}
|R̂j(ẽ)|

| Sj .

The typical Monte-Carlo estimator for ϕj(c̃j ;Si) is the average of the samples Ej,K := 1
K

∑K
k=1 Ej,k.

When K is large, giving us arbitrarily precise Monte-Carlo estimation, we can replace 1 {ϕj(c̃j ;Sj) ≤ 0}
with 1

{
Ej,K ≤ 0

}
in the construction of ebj with no repercussions.

When K is instead chosen with regard to computational budget restrictions, then we may experience
Monte-Carlo estimation error. The goal is then to control the effect of such error on the resulting FDR
of the overall procedure. Importantly, we are more preoccupied with having confidence in the sign of
ϕj(c̃j ;Sj) rather than its value. Therefore, we can use confidence intervals to control the error from
estimating the sign, which filters through as an additive penalty to the resulting FDR.

For some fixed K ∈ Z+ and for each j, produce K i.i.d. resamples e(1), . . . , e(K) conditional on
Sj , and compute Ej,1, . . . , Ej,K according to (7). Define αCI = α0|Re-BH(e)|/m, for some α0 ∈ (0, 1)
corresponding to the Monte-Carlo error budget. Using the observations Ej,1, . . . , Ej,K , construct a
(1− αCI)-coverage confidence interval Cj,K := Cj,K(Ej,1, . . . , Ej,K) such that

P
(
ϕ(c̃;Sj) ∈ Cj,K | Sj , e

)
≥ 1− αCI.

Let Uj,K be the upper endpoint of Cj,K . Define the CI-approximated boosted e-values

eb,CI
j = m · 1 {Uj,K ≤ 0}

α|R̂j(e)|
. (8)

We summarize the above procedure in Algorithm 2, and formalize the validity of the CI-approximated
boosted e-values in Proposition 1.

Algorithm 2: e-BH-CC with CI-approximated boosted e-values
Input: e-values e1, e2, . . . , em; sufficient statistics S1, S2, . . . , Sm; target FDR level α; number of

Monte-Carlo samples K; Monte-Carlo error budget α0.
1 αCI ← α0|Re-BH(e)|/m.
2 for j ∈ [m] do
3 Generate ẽ(1), . . . , ẽ(K) i.i.d.∼ e |Sj .
4 Compute Ej,1, . . . , Ej,K according to (7).
5 Construct a (1− αCI) confidence interval Cj,K for ϕj(c̃j ;Sj).
6 Construct the CI-approximated boosted e-values as in (8).
7 end
8 Apply e-BH to (eb,CI

1 , . . . , eb,CI
m ) at level α and obtain the rejection set Re-BH(eb,CI).

Output: the rejection set Re-BH(eb,CI).

Proposition 1. Suppose e = (e1, . . . , em) are generalized e-values. Running e-BH on the collection of
CI-approximated boosted e-values eb,CI = {eb,CI

j }j∈[m] defined in (8) with the target FDR level α and the
Monte-Carlo error budget α0, we have

FDR
[
Re-BH(eb,CI)

]
≤ α+ α0.

If we replace the (1 − αCI) confidence interval with an asymptotic (1 − αCI) confidence interval, we
obtain instead asymptotic FDR control, as formalized by the following corollary.
Corollary 1. Replacing the (1−αCI) confidence interval in Proposition 1 with an asymptotic (1−αCI)
confidence interval leads to the analogous conclusion

lim
K→∞

FDR
[
Re-BH(eb,CI)

]
≤ α+ α0,

where K is the number of resamples from e | Sj.
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The proof of Proposition 1, as well as that of Corollary 1, can be found in Appendix A.2.

3.2.2 Online Monte-Carlo estimation with error control

When K is fixed ahead of time, the user may experience a disappointing event: the Monte-Carlo estimate
En is negative, yet the confidence interval contains zero, making the resulting boosted e-value zero as
well. Given this, it would be quite tempting to continue resampling from e | Sj , hopefully until the
confidence interval is finally contained within R≤0. Unfortunately, this adaptive mechanism will break
the error control of the confidence interval, which has downstream implications for FDR control.

To address this issue in general, we resort to the anytime-valid confidence sequence (AVCS) (see
e.g. Ramdas et al. (2023) for a review). A (1−α)-coverage AVCS for some parameter θ is a sequence of
confidence intervals {(Lk, Uk)}k≥1 such that

P
(
∀k ∈ N, θ ∈ [Lk, Uk]

)
≥ 1− α.

This is in contrast to the common confidence interval, where the “for all k” qualifier is outside of the
probability. Usually, the AVCS is used as an online version of a confidence interval: at each time step
k, a new sample Xk is added to the existing sequence of samples to construct the latest iterate of the
confidence interval [Lk, Uk] in a way such that the miscoverage probability of this process at any point
is at most α.

Using the AVCS, we can ignore K and replace the confidence interval in Proposition 1 with its
anytime-valid variant: for each j ∈ [m], accrue samples Ej,1, Ej,2, . . . | Sj by resampling e(1), e(2), . . . |
Sj and using (7). Define αAVCS = α0|Re-BH(e)|/m for some α0 corresponding to the Monte-Carlo
error budget. We then construct a (1 − αAVCS)-coverage anytime-valid confidence sequence {Cj,k :=
Cj,k(Ej,1, . . . , Ej,k)}k≥1, and define the AVCS-approximated boosted e-values

eb,AVCS
j = m · 1 {∃k ∈ N : Uj,k ≤ 0}

α|R̂j(e)|
,

where Uj,k is the upper endpoint of Cj,k. Algorithm 3 summarizes the procedure of implementing e-
BH-CC with AVCS-approximated boosted e-values, and Proposition 2 formalizes the FDR control of the
resulting rejection set.

Algorithm 3: e-BH-CC with ACVS-approximated boosted e-values
Input: e-values e1, e2, . . . , em; sufficient statistics S1, S2, . . . , Sm; target FDR level α;

Monte-Carlo error budget α0.
1 αCI ← α0|Re-BH(e)|/m.
2 for j ∈ [m] do
3 Initialization: k ← 0 and Cj,0 = R.
4 while Uj,k > 0 and Lj,k ≤ 0 do
5 k ← k + 1.
6 Generate ẽ(k)∼e |Sj .
7 Compute Ej,k according to (7).
8 Construct the kth interval Cj,k in the (1− αAVCS) confidence sequence for ϕj(c̃j ;Sj).
9 end

10 Construct the AVCS-approximated boosted e-values eb,AVCS
j = m · 1{Uj,k≤0}

α|R̂j(e)|
.

11 end
12 Apply e-BH to (eb,AVCS

1 , . . . , eb,AVCS
m ) and obtain the rejection set Re-BH(eb,AVCS).

Output: the rejection set Re-BH(eb,AVCS).

Proposition 2. Suppose e = (e1, . . . , em) are generalized e-values. Running e-BH on the collection
of AVCS-approximated boosted e-values eb,AVCS = {eb,AVCS

j }j∈[m] with the target FDR level α and the
target Monte-Carlo error budget α0, we have

FDR
[
Re-BH(eb,AVCS)

]
≤ α+ α0.

In practice, we can replace the (1−αAVCS)-AVCS by an asymptotic (1−αAVCS)-coverage AVCS (Waudby-
Smith et al., 2021) in Proposition 2 when k is large enough. We delegate the definition of an asymptotic
AVCS and the proof of Proposition 2 in Appendix A.3.
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3.2.3 Filtering the (potential) rejection set

One additional improvement, in both computational feasibility and power, is to restrict the focus onto
potentially rejectable hypotheses. Since we have to repeat the process of resampling and Monte-Carlo
estimation for each j ∈ [m], we can save an entire iteration of computation by choosing to not boost
specific e-values.

For example, one rudimentary filter is to avoid the indices {j : ej = 0}. For all such j, the boosted
e-value ebj will be zero directly by construction (4) regardless of the crystallization of the critical value ĉj .
Sections 5 and 6 contain two examples of problem settings where the corresponding e-values can be zero
with positive probability. More generally, any e-value that is designed as an “all-or-nothing bet” (Shafer,
2021) takes value 1/p with probability p > 0 and 0 otherwise.

Another possible strategy to filter out low-potential discoveries is to use preliminary test statistics,
such as p-values or linear model coefficients. Take, for example, the m-dimensional z-testing problem
setting (covered in-depth in Section 4.1). Each hypothesis Hj : µj ≤ 0 has a corresponding p-value pj
and e-value ej . To control the FDR at α, the BH procedure rejects pj if it lies below αk̂/m for some
data-driven k̂ ∈ [m]; therefore, a prerequisite to rejecting pj is that it is at most α. We can define a filter
set M := {j : pj ≤ α} and use it to construct masked boosted e-values:

eb,Mj := ebj1 {j ∈M} . (9)

Since E[eb,Mj ] = E[ebj1 {j ∈M}] ≤ E[ebj ], the masked e-values are also valid. To see examples of filters
used in simulations, we direct the reader to the details of Sections 4.3 and 5.4.

Using (9) for any filter M ⊇ R(e) gives us a collection of zeroed-out e-values, over which we can run
e-BH and control the FDR. At this point, the reader may express concern that filtering may cause e-BH-
CC to become overly conservative. We argue this is not the case, in the sense that M ∩R(eb) = R(eb,M )
exactly. To illustrate this more specifically, assume that there is exactly one index j such that j /∈ M
and M ∪ {j} = R(eb). Then all other k ∈ R(eb), k ̸= j will still end up in R(eb,M ). That is, the
“accidental” filtering out of ebj will not interfere with the fate of any e-value kept by the filter M . This is
a straightforward observation stemming from the fact that the e-BH rejection threshold over eb, denoted
t̂e-BH(e

b), has the following characterization:

t̂e-BH(e
b)

{
= m

α|R(e)| when R(e) = R(eb)
≤ m

α(|R(e)|+1) when R(e) ⊊ R(eb).

Combining this with the fact that boosted e-values take magnitude at least m
α(|R(e)|+1) , we conclude that

R(eb) ∩M = R(eb,M )

We also previously claimed that filtering improves the power of our method. First, we note that M is
generally designed to contain Re-BH(e) in order to preserve the uniform power improvement. In addition,
when implementing e-BH-CC in practice with Monte-Carlo estimation, we use a confidence interval or
AVCS and follow Proposition 1 or 2, respectively. In both cases, the confidence level (αCI or αAVCS) has
a dependence of 1

m , where m is the number of hypotheses (i.e., the number of confidence intervals or
sequences that can err). However, when we employ a filter M , the number of boosted e-values we may
incorrectly evaluate becomes |M | ≤ m. Therefore, we can replace m with |M | in αCI and αAVCS while
preserving the FDR control with additive Monte-Carlo error in Propositions 1 and 2. The effect on the
confidence mechanism is that it becomes less conservative, which leads to higher power.

We close this section by formalizing the effect of filtering on the FDR control guarantee of the e-BH-
CC procedure, whose proof can be found in Appendix A.4.
Proposition 3. Let R(e) be the original e-BH rejection set and R(eb) be the boosted e-BH rejection
set, both at level α ∈ (0, 1). Then for all sets S such that R(e) ⊆ S ⊆ R(eb), FDR[S] ≤ α.

3.3 Connection to dBH
As briefly discussed earlier, Fithian and Lei (2022) propose a method named dBH, which uses conditional
calibration to adjust the p-value threshold in BH, so as to control the FDR under dependence. Concretely,
supposing access to a sufficient statistic Sj for each j ∈ [m] such that one can sample from p :=
(p1, . . . , pm) |Sj under the null hypothesis, it finds the critical value τ̂j (via numerical integration):3

3This is a simplified version of the dBH procedure. In the original formulation, the threshold is written as a function of
the tuning parameter c.
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τ̂j = sup

{
c ∈ (0, 1) : EHj

[
1{pj ≤ τ̂j}

r̂j(p)

∣∣∣Sj

]
≤ α

m

}
, (10)

where r̂j(p) is an estimate of |{j} ∪ {k ∈ [m] : pk ≤ τ̂k}| (not to be confused with R̂j(e)). The adjusted
p-value threshold then yields a selection set R̂+ = {j ∈ [m] : pj ≤ τ̂j}. Note that the size of R+ may
differ from the estimates r̂j(p), so the construction of τ̂j does not necessarily imply FDR control. The
dBH procedure takes additional pruning steps to ensure FDR control:

(1) if |R̂+| ≥ r̂j(p) for all j ∈ [m], then stop the procedure and return R̂+;

(2) if there exists j ∈ [m] such that |R̂+| < r̂j(p), then generate U1, . . . , Um
i.i.d.∼ Unif([0, 1]) that is

independent of everything else, and return

RdBH :=
{
j ∈ R̂+ : Uj ≤ r∗

r̂j(p)

}
, where r∗ = max

{
r ∈ [m] :

∣∣{j ∈ R̂+ : Uj ≤ r
r̂j(p)
}
∣∣ ≥ r

}
.

As we can see here, dBH makes use of conditional calibration to achieve the FDR control, while in our
framework, we start with a FDR-controlling selection set and use conditional calibration to increase
the power. Additionally, the dBH procedure involves additional pruning steps that introduce external
randomness, while our method does not.

Before closing this section, we point out an interesting fact about dBH—it actually has an e-BH
interpretation, based on which the external randomness can be avoided (with potential loss of power).
To see this, we write

edBH
j =

m1{pj ≤ τ̂j}
αR̂j(p)

. (11)

For simplicity, we assume that the conditional expectation in (10) is less than or equal to α/m at
the critical value (otherwise we can replace the “≤” with “<” as in our e-BH-CC procedure). As a
consequence, E[edBH

j ] ≤ 1 for any j ∈ H0, which means that edBH
j is a valid e-value. With this observation,

we can apply the e-BH procedure to the e-values and obtain a deterministic selection set with FDR
control. One can also check that applying e-BH to the “dBH e-values” in (11) is equivalent to dBH with
all the Uj ’s replaced by 1; moreover, the dBH proceudure is equivalent to applying the e-BH procedure
to (edBH

1 /U1, . . . , e
dBH
m /Um)—this is the pe-BH procedure in Ignatiadis et al. (2023) or equivalently the

U-eBH procedure in Xu and Ramdas (2023a). Such a connection has also been noticed under a different
context in Jin and Candès (2023). We formalize the equivalence in the following proposition, with its
proof deferred to Appendix A.5.
Proposition 4. The e-BH procedure applied to (edBH

1 /U1, . . . , e
dBH
m /Um) is equivalent to the dBH pro-

cedure, where edBH
j ’s are as defined in (11). In particular, if we replace all the Uj’s by 1, then dBH is

equivalent to e-BH applied to (edBH
1 , . . . , edBH

m ).

4 Example: parametric testing
First, we study the relatively simple task of identifying which components of a Gaussian random variable
have nonzero mean. Given an m-dimensional z-statistic Z ∼ Nm(µ,Σ) with Σ ≻ 0, we define the
null hypotheses Hj : µj = 0 and their corresponding one-sided alternative Halt

j : µj > 0. Fithian and Lei
(2022) consider this problem for both known and unknown covariance matrix Σ as an example application
of dBH, their conditionally-calibrated correction to the BH procedure. After constructing the relevant
e-values for testing against H1, . . . ,Hm, we closely follow their work in Sections 3.1 and 3.2 as their
conditioning statistic plays the role of our sufficient statistic for the e-value resampling step.

4.1 Multivariate z-statistics
Consider Z ∼ Nm(µ,Σ) with Σ known. Without loss of generality, we assume Σjj = 1 for all j. Vovk
and Wang (2021) observe that for aj ̸= 0,

ej = exp(ajZj − a2j/2) (12)
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is a valid e-value with respect to Hj . ej is the likelihood ratio test (LRT) statistic for Hj versus the point
alternative H

(aj)
j : µj = aj . The choice of the hyperparameter aj can be either fixed a priori or derived

from an independent hold-out set and will not affect the validity of the e-value. However, different values
of aj will lead to varying levels of power. The intuition from the Neyman-Pearson lemma is that the
choice of aj that matches with the true data-generating distribution under the alternative. When the
alternative hypothesis for Hj is composite, our choice of aj may lead to ej being far from optimally
powerful—but it is impossible to be certain without assuming we know the alternative distribution. In
these cases, the practitioner may attempt to learn the best aj independently from a separate, independent
dataset. We run simulations, detailed in Section 4.3, where our method is applied for e-values constructed
using correctly specified “exact” LRT e-values as well as a range of misspecified LRT e-values. We find
that when estimating µ using a hold-out set, the performance is quite similar to the correctly specified
e-values, so we do not present those results.

In order to use conditional calibration, we define the sufficient statistic Sj = Z−j −Σ−j,jZj for each
j ∈ [m], as in Fithian and Lei (2022). To resample ẽ1, . . . , ẽk | Sj , it suffices to resample from the
conditional joint distribution Z | Sj (under Hj) and compute (12) for each j. We claim that we can
sample Y ∼ N (0,Σjj) and construct the z-statistic Z̃(j) = (Z̃

(j)
1 , . . . , Z̃

(j)
m ) such that

Z̃
(j)
j = Y, Z̃

(j)
−j = Sj +Σ−j,jY (13)

in order to obtain a resample from Z | Sj . The following proposition formalizes the claim.
Proposition 5. For each j ∈ [m], choose sufficient statistic Sj = Z−j − Σ−j,jZj and resample the
m-dimensional z-statistic Z̃(j) from Z | Sj as written in (13). Define the resampled e-values ẽ

(j)
k =

exp(akZ̃
(j)
k − a2k/2) for each k ∈ [m]. Then(

ẽ
(j)
1 , . . . , ẽ(j)m

)
| Sj ∼ (e1, . . . , em) | Sj

under Hj.
Furthermore, independent samples of Y ∼ N (0,Σjj) lead to independent resamples from (e1, . . . , em) |

Sj.

Proof. It is sufficient to show that the resample Z̃ follows the conditional joint distribution Z | Sj under
Hj : µj = 0. Since Cov(Zj , Sj) = 0, the two entities are indepdendent. Thus, the independently sampled
Z̃j = Y ∼ N (0,Σjj) follows Zj | Sj automatically.

Define the deterministic function g : R × Rm−1 → Rm−1 such that g(z, S) = S + Σ−j,jz. Then
Z−j = g(Zj , Sj) and Z̃−j = g(Y, Sj) (by (13)). Therefore,

Zj | Sj ∼ Y | Sj =⇒ (Z−j , Zj) | Sj ∼ (Z̃−j , Z̃j) | Sj

and we conclude as desired.

4.2 Multivariate t-statistics
When the covariance matrix Σ is instead partially or totally unknown, the t-statistic replaces its z-statistic
counterpart. Assume that Z ∼ Nm(µ,Σ), where Σ = σ2Ψ with Ψ ≻ 0 known but σ ∈ R+ unknown.
Furthermore, assume we have access to an auxiliary independent vector W ∼ Nn−m(0, σ2In−m) for
estimating σ2. Then, under the same null hypotheses H1, . . . ,Hm, the t-statistics used for testing is

Tj :=
Zj√
σ̂2Ψjj

∼ tn−m,

where (n−m)σ̂2 = ∥W∥2 ∼ σ2χ2
n−m. Here, tn−m and χ2

n−m refers to the student-t and χ2 distributions
with n−m degress of freedom.

For e-values, we can again construct a likelihood ratio test statistic per j. Under the point alternative
H

(aj)
j : µj = aj , Tj ∼ tn−m(aj), the noncentral t-distribution with noncentrality parameter aj and n−m

degrees of freedom; this distribution is a generalization of the regular t-distribution under the relation
tn−m(0)

d
= tn−m. Denoting the density of tn−m(a) as ftn−m,a, we then define for each Hj the LRT e-value

ej =
ftn−m,aj

(Tj)

ftn−m,0(Tj)
, (14)
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where again the choice of aj can be chosen a priori or through sample splitting.
For the conditioning statistic Sj , Fithian and Lei (2022) construct the pair (Uj , Vj) with the compo-

nents defined as follows:

Uj = Z−j −Ψ−j,jΨ
−1
jj Zj ,

Vj = ∥W∥2 +
Z2
j

Ψjj
.

(15)

By choosing this statistic, we again have Sj ⊥⊥ Tj ; in fact, Uj , Vj , and Tj are all mutually independent.
In addition, it can be shown that T−j is a deterministic function of (Tj , Uj , Vj):

Tk = Ujk

√
n−m+ T 2

j

ΨkkVj
+

Ψkj

Ψjj
Tj for k ̸= j. (16)

As a direct consequence of (16), we can resample from T | Sj by sampling Y ∼ tn−m independent from
Sj , setting T̃j = Y , and setting T̃−j as the function of T̃j , Sj above. The LRT e-values can be calculated
per-component. We formalize the correctness of this resampling scheme in the following proposition.
Proposition 6. For each j ∈ [m], choose sufficient statistic Sj = (Uj , Vj) as defined in (15). Using Uj,
Vj, and T̃j = Y ∼ tn−m (independent from Sj), construct T̃−j as per (16). Then T̃ | Sj ∼ T | Sj and(

ẽ
(j)
1 , . . . , ẽ(j)m

)
| Sj ∼ (e1, . . . , em) | Sj

under Hj, where ek and ẽ
(j)
k is constructed as the component-wise LRT by using (14) on T and T̃ ,

respectively.
Furthermore, independent samples of Y ∼ tn−m lead to independent resamples from (e1, . . . , em) | Sj.

Proof. We can proceed similarly to the proof of Proposition 5. As Fithian and Lei (2022) show, Sj =

(Uj , Vj) is independent to Tj . Therefore, the independently sampled T̃j = Y ∼ tn−m is distributed as
Tj | Sj . Noting that T̃−j depends on T̃j , Sj in the same exact deterministic way as T−j depends on
Tj , Sj , we conclude that

(T−j , Tj) | Sj ∼ (T̃−j , T̃j) | Sj .

The proposition is then immediate.

4.3 Simulation studies
We show the power improvement given by e-BH-CC on the LRT e-values for both the z-testing and
t-testing problems.

Settings. We take m = 100 and the set of nonnull H1 = {1, . . . , 10}, so that

µ = (A,A, . . . , A︸ ︷︷ ︸
10

, 0, . . . , 0) ∈ R100,

where A is a constant determining the signal strength. The covariance matrix has the form Σij = ρ|i−j|

for any i, j ∈ [m]. The Gaussian data is thus generated from N (µ,Σ). Depending on the specific testing
problem, we will choose various ranges for the signal strength A and covariance parameter ρ.

Methods. We compare e-BH and e-BH-CC, both at level α = 0.05. As a reference, we also run BH at
α on the one-sided p-values derived from the z-statistics and t-statistics. Note that BH does not have
FDR control guarantees when ρ < 0, which we consider in the t-testing simulations, so it is not truly
comparable with our e-value methods (which do guarantee FDR control).

Computational details. We use a hybrid AVCS formulation to control the Monte-Carlo error. This
is a computational trick which balances the conservativeness of the exact finite-sample AVCS with the
asymptotic AVCS (although we lose any meaningful statement regarding the limiting FDR). The first
3000 samples, batched in sizes of 100 and scaled to the unit interval, are used to form the hedged capital
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Figure 2: Realized power and FDP of the simulated experiments for z-testing. Each plot contains the
averaged metrics over 1000 replications. The short and long orange dashed lines in the FDP plots
represent the target FDR (0.05) and the FDR bound with Monte-Carlo error (0.055), respectively.

confidence sequence (HCCS) as proposed in Waudby-Smith and Ramdas (2024). After this point, the
next samples, also batched in sizes of 100, are used to construct the asymptotic AVCS described in
Theorem 2.2, Waudby-Smith et al. (2021). If after 5000 samples the resulting AVCS still contains zero,
we stop early and fail to boost the e-value.

In addition, we employ a filter to cut down the number of e-values which we attempt to boost. For all
experiments, we filter out all j such that ej = 0, since they see no benefit from boosting. Furthermore,
we use the filter

M = {j : pj ≤ 3α},

where pj are the one-sided p-values formed from the z-statistics or t-statistics.
We chooose α0 = 0.1 · α = 0.005 and use αAVCS as described in Algorithm 3, replacing m with the

size of the filter. This is in line with our target FDR (accounting for Monte-Carlo error) of 0.05. Even
though the asymptotic AVCS only bounds above the limit supremum of the FDR at α+α0 = 0.055, we
see that the FDR is empirically controlled at 0.05.

4.3.1 Experiments for z-testing

We vary A ∈ {1, 2, . . . , 6} and set ρ = 0.5. Four different constructions of LRT e-values are considered:
the first three constructions let aj = a, ∀j ∈ [m] for a ∈ {1, 2, 3}; for the last construction, we use
a correctly specified aj (setting it equal to A). The mean power and FDP curves, taken over 1000
replications, are shown in Figure 2.

For all choices of aj , we see a major improvement in power comparing e-BH-CC to base e-BH.
The power improvement is uniform over all possible signal strengths, but is especially large when aj is
incorrectly specified. For example, when aj = 1, we see that e-BH has minimal power even in the large
signal experiments. e-BH-CC immensely outperforms e-BH in this situation.

It is worth noting that in these experiments, BH still controls the FDR as the p-values are PRDS (Ben-
jamini and Yekutieli, 2001). Thus, we can intrepret the power gap between BH and e-BH as the power
loss from translating the multiple testing problem from p-values to e-values. The e-BH-CC power curve
then demonstrates how much of the power loss can be reclaimed. In all cases, we see that the power of
e-BH-CC is quite comparable to that of BH. The power reclamation is even more evident in the misspec-
ified case aj = 1, as mentioned previously. One takeaway is that when aj is chosen poorly through fixed
means or estimation, e-BH-CC can still perform powerfully, giving an added margin of safety regarding
parameter misspecification.

Lastly, it is clear that the FDR is controlled empirically at α + α0 (even at α) for all settings. The
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realized FDP of e-BH-CC is generally much higher than that of base e-BH (which is close to zero),
affirming that we are able to use more of the FDR budget by boosting e-BH.

4.3.2 Experiments for t-testing

We vary ρ ∈ {0.9,−0.9} and degrees of freedom n−m ∈ {5, 50} to visualize the effect of e-BH-CC in both
heavy and light tailed settings. For n−m = 5 (the heavy tailed setting), we vary A ∈ {2, 2.5, 3, . . . , 6.5},
while for n − m = 50 (the light tailed setting), we vary A ∈ {1, 1.5, 2, . . . , 5.5}. For each choice of
hyperparameters, we assume that aj is chosen correctly, setting it equal to the signal strength A. The
mean power and FDP curves, taken over 1000 replications, are shown in Figure 3.

Again, we see that in all settings e-BH-CC improves upon e-BH. The improvement is notable when
the signals are stronger, although when the signals are weak all three methods (including BH) suffer in
power. Note that in these settings, BH does not necessarily control the FDR; however, we still find it
pertinent to consider the gap between it and e-BH a loss of power. In terms of reclaiming the power
gap between BH and e-BH, e-BH-CC does quite well and is even comparable to BH in the light-tailed
experiments. To conclude, we again note that e-BH-CC controls the FDR empirically and shows a better
usage of the FDR budget compared to e-BH.

5 Example: knockoffs

5.1 Conditional independence testing
We turn to the problem of feature selection, where the goal is to discover which of the covariates X =
(X1, X2, . . . , Xm) are significant to the value of the outcome variable Y . We can encode the notion of
Xj being significant to the outcome with the following conditional independence hypothesis:

Hj : Y ⊥⊥ Xj | X−j .

These can serve as the null hypotheses: if Hj is true, then the value of Xj has no effect on the outcome,
controlling for all other variables. We call Xj a null variable when Hj is true and nonnull when Hj is
false. The null hypothesis set H0 corresponds to the indices of the null covariates, and analogously H1

corresponds to the nonnull covariates. Our goal is to reject a subset of [m] in a way which controls the
FDR, i.e., there is little intersection with H0.

One popular approach for testing conditional independence is to assume the model-X framework. In
this framework, the covariate-outcome tuple (X1, . . . , Xm, Y ) is interpreted as a draw from some joint
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Figure 3: Realized power and FDP of the simulated experiments for t-testing. The details are otherwise
the same as in Figure 2.
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distribution PXY = PX × PY |X , where PX (the covariate distribution) is assumed to be known (or
reasonably well-approximated) while the model PY |X is totally unknown. Under these assumptions, one
can use a multiple testing procedure known as the model-X knockoff filter (Candès et al., 2018) to conduct
feature selection with a provable exact-sample FDR control guarantee. We give a brief exposition of the
procedure in the following section with the goal of showing its relevance to e-values and e-BH-CC.

5.2 Model-X knockoffs
Given the design matrix X = (Xi1, . . . , Xim)i∈[n] ∈ Rn×m and outcomes Y = (Y1, . . . , Yn)

⊤ in the
dataset, the model-X knockoff filter uses the practitioner’s knowledge of the covariate distribution PX

to construct “knockoff variables” X̃ = (X̃i1, . . . , X̃im)i∈[n]. These knockoff variables must satisfy an
independence condition Y ⊥⊥ X̃ |X as well as the “swap” condition:

(Xj , X̃j ,X−j , X̃−j) ∼ (X̃j ,Xj ,X−j , X̃−j) ∀j ∈ [m],

that is, the joint distribution of (X, X̃) is preserved after swapping the positions of the columns Xj and
X̃j . Hence, X and X̃ are quite similar in terms of their dependency structure, but the latter has no
significance to the outcome that is not already expressed through X. Hence, conditional on X, X̃ are
knockoff covariates which carry no value (in predicting Y ).

At a high level, access to these knockoff variables provides a way to appropriately calibrate any
feature importance measure of Xj . The procedure uses the augmented design matrix [X, X̃] and the
outcome Y to construct a feature importance vector W =W([X, X̃],Y ) ∈ Rm (where Wj corresponds
to Xj and its knockoff) using some algorithm W(·) with the property that switching Xj and X̃j in the
augmented design matrix flips the sign of the resulting Wj . In general, such statistics are computed by
finding individual feature importances for Xj and X̃j and taking their difference. As noted in Candès
et al. (2018), the signs of {Wj : j ∈ H0} conditioned on their magnitudes {|Wj | : j ∈ H0} are i.i.d. coin
flips. In contrast, Wj for nonnull Xj would tend to be positive (signifying more importance of Xj than
X̃j). This aligns with the intuition of X̃j as “negative controls”: when Xj and X̃j are both insignificant,
the feature importance statistic is symmetric around 0, but when Xj is significant Wj will be positively
skewed. Using the feature importances W , we select the set of features:

Rkn = {j : Wj ≥ T}, where T := inf

{
t > 0:

1 +
∑

j∈[m] 1 {Wj ≤ −t}∑
k∈[m] 1 {Wk ≥ t}

≤ α

}
. (17)

The threshold T is defined to be the smallest t > 0 such that an estimate of the FDR (which is constructed
using our intuition on the null i.i.d. coin flips above) is controlled by α. For a rigorous proof of FDR
control, see Candès et al. (2018); Barber and Candès (2015).

Although the knockoff filter is an elegant and effective approach to feature selection, it still has a
few weaknesses. One such weakness, known as the threshold phenomenon, occurs when the number of
features with non-negligiable significance is less than 1/α. In this sparse setting, the knockoffs procedure
experiences a drastic loss in power. An explanation for this phenomenon is in the definition of T , where
we compare an estimator of the FDP (false discovery proportion) against α. The denominator measures
the size of the rejection set when using t, while the numerator is at least 1; when the denominator is less
than 1/α, Rkn is forced to be empty. In practice, one still sees the procedure suffer from powerlessness
when the proportion of significant features is generally sparse, even when |H1| is technically above 1/α.

5.2.1 Derandomizing knockoffs with e-values

In addition to the threshold phenomenon, another weakness of the knockoff filter is its high selection
variability. Sampling the knockoff matrix X̃ introduces extraneous randomness into the procedure, so
two different runs of the knockoff filter (with two distinct knockoff matrices) may result in wildly different
rejection sets. For practical purposes, this is a major detraction—for example, two scientists studying the
same feature selection problem with the same dataset may conclude totally different sets of significant
covariates. Hence, for scientific reproducibility, a way to derandomize the knockoff filter was highly
sought-after.
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Ren and Barber (2024) solve the variability issue by proposing a derandomized version of the knockoff
filter. They begin by connecting the knockoff filter with the e-BH procedure through defining

ej := m · 1 {Wj ≥ T}
1 +

∑
k∈[m] 1 {Wj ≤ −T}

, (18)

where Wj is the feature importance for Xj and T is the rejection threshold in (17). It can be shown
that

∑
j∈H0

E[ej ] = m, implying that e1, . . . , em are generalized e-values (Definition 1). Running e-BH
on these e-values will return a rejection set with FDR control, and the authors show that this rejection
set is identical to the output of the knockoff filter using the same knockoff matrix.

The procedure to derandomize the knockoff filter is as follows. After choosing a hyperparameter

αkn ∈ (0, 1), sample d knockoff samples (X̃
(1)

, . . . , X̃
(d)

). For each knockoff X̃
(k)

, we run the knockoff

filter with the feature importances W (k) =W([X, X̃
(k)

],Y ) at level αkn, which results in the threshold

T (k) := inf

t > 0:
1 +

∑
j∈[m] 1

{
W

(k)
j ≤ −t

}
∑

k∈[m] 1
{
W

(k)
k ≥ t

} ≤ αkn

 .

We then use (18) to construct the generalized e-values for the kth run of the knockoff filter:

e
(k)
j = m ·

1
{
W

(k)
j ≥ T (k)

}
1 +

∑
k∈[m] 1

{
W

(k)
j ≤ −T (k)

} , ∀j ∈ [m]. (19)

For each feature j, we can construct a derandomized e-value by averaging e
(k)
j over all d runs of the

knockoff filter. The averaged e-value, formally defined as

ēj :=
1

d

∑
k∈[d]

e
(k)
j , (20)

exhibits more stability as the extraneous randomness from each run of knockoffs is averaged out. Since
taking the average preserves (generalized) e-value validity, we can run e-BH on (ē1, . . . , ēm) to get a
rejection set while controlling the FDR at level α.

The hyperparameter αkn does not necessarily have to equal α (the desired FDR control), and Ren
and Barber (2024) suggest having the former depend on the latter through the choice αkn = α/2 in order
to achieve good power. Regardless of the choice of αkn, the resulting ē1, . . . , ēm will be valid e-values. In
Figures 4, 5, and 6, we show the effect of conditional calibration on power and FDR for multiple choices
of αkn. In addition, there are other slight improvements which can affect the power of derandomized
knockoffs—we discuss our implementation for the simulations in more detail in Section 5.4.

Unfortunately, even with these added techniques, the power of derandomized knockoffs procedure
tends to suffer relative to that of the original method. This is due to the fact that the knockoff e-values
in (18) (which is equivalent to the original method) are “tight” in the sense that the inequality (i) in
(1) is nearly tight. However, the average of tight e-values is no longer tight, leading to a loss of power
from e-BH. This power drop is most apparent in regimes with low-to-moderate signal strength; one
can intrepret this as looseness in the FDR control inequality translating to signals becoming relatively
weaker. To add to this, the gap becomes noticeably larger the more derandomization runs d are used.

Therefore, we can identify two settings for conditional independence testing where the knockoff filter,
as an e-value procedure, suffers from power loss: sparse signals and derandomization. However, we can
reclaim the power loss and fill in the gap by using conditional calibration to boost the derandomized
knockoffs procedure—even in settings where the threshold phenomenon may happen. In the following
subsection, we will describe how to implement e-BH-CC for derandomized model-X knockoffs.

5.3 Conditional calibration for derandomized knockoffs
The choice of conditioning statistic Sj must allow the i.i.d. resampling of (e1, . . . , em) under the null
conditional independence hypothesis Hj . Intuitively, it is sufficient if we can resample the design matrix
itself in a way that fulfills Hj ; i.e., the jth column of the resampled matrix is no longer significant to
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the outcome (conditional on the other columns). By taking this resampled design matrix as the true X,
we can sample its knockoff matrix d times to construct the derandomized e-values. The jth e-value will
correspond to a true null Hj by the nature of the resampled design matrix.

Resampling the design matrix is a crucial step in the conditional randomization test (CRT), which
gives a p-value for testing against Hj in the model-X framework (Candès et al., 2018). In the first step of
the CRT, the resampled matrix is constructed by drawing a new copy of the jth column from PXj |X−j

,
which is known through the model-X assumption; it is then concatenated with the non-jth columns of
the original design matrix and combined with the outcome vector Y to simulate the original dataset.
This formulation of the CRT leads us to choose Sj = (X−j ,Y ) as the sufficient statistic.

Like in the CRT, we can construct a resample X ′ of the design matrix X conditional on Sj : we
invoke our knowledge of PXj |X−j

to let X ′
j be samples from the conditional distribution and assign to

X ′
−j the corresponding column values of X−j . We can use this resample as our starting point for the

derandomized knockoffs procedure (with d derandomization runs), which outputs the averaged e-values˜̄e1, . . . , ˜̄em.
The following proposition states the correctness of the afore-described resampling procedure in pro-

ducing i.i.d. resamples from (ē1, . . . , ēm) | Sj .
Proposition 7. Fix α ∈ (0, 1), αkn ∈ (0, 1), and d ∈ N. For each j ∈ [m], choose sufficient statistic Sj =
(X−j ,Y ). As in the CRT (Candès et al., 2018), construct a resample X ′ of X by letting X ′

−j = X−j

and X ′
ij be a sample from PXij |Xi,−j

. Using the new, resampled dataset (X ′,Y ), run the derandomized
knockoffs procedure (with hyperparameters d and αkn) at level α to get the e-values ˜̄e1, . . . , ˜̄em, where ˜̄ej
is constructed as (19) and (20). Then

(˜̄e1, . . . , ˜̄em) | Sj ∼ (ē1, . . . , ēm) | Sj

under Hj. Furthermore, independent resamples X ′ will lead to independent (˜̄e1, . . . , ˜̄em) conditional on
Sj (also under Hj).

Proof. The proposition follows once we show the distributional equality between the old and resampled
columns Xj and X ′

j (conditional on X−j and Y ) under the null Hj . The null states that Y ⊥⊥Xj |X−j .
Since the resample was thus created without any extraneous knowledge of Y (outside of what is contained
when conditioning on X−j), the desired property simplifies to

Xj |X−j ∼X ′
j |X−j .

However, the above is evident since we resampled X ′
j by the law ⊗n

i=1PXij |Xi,−j
.

5.4 Simulation studies
We illustrate the power improvement obtained from using e-BH-CC on the derandomized knockoffs
e-values through numerical experiments.

Settings. We generate the design matrix and outcome vector under the Gaussian linear model. Let
n = 500 be the number of observations and m = 200 be the number of covariates (i.e., number of
hypotheses). For each observation, the row of covariates are jointly drawn from X ∼ Nm(µ,Σ). In our
experiments, we set µ = 0 and Σij = 0.5|i−j|, for any i, j ∈ [m].

We then conditionally draw the response by the Gaussian linear model Y | X ∼ Nn(X
⊤β, 1), giving

one independent draw of the covariate-outcome pair (X,Y ). We repeat this n times to obtain our dataset
(X,Y ). The coefficient vector β is formatted as

β =

(
0, . . . , 0︸ ︷︷ ︸

z

,
A√
n
, 0, . . . , 0︸ ︷︷ ︸

z

,− A√
n
, . . .

)
∈ Rm;

that is, every z zeroes is followed by one nonzero amplitude with alternating sign. Note that this directly
translates to |H1| = ⌊ m

z+1⌋.
We will consider two separate regimes: the dense regime (with z = 7 and |H1| = 25 nonnull vari-

ables) and the sparse regime (with z ∈ {19, 20} and |H1| ∈ {10, 9}). By running simulations for both
regimes, we can demonstrate the power improvement from e-BH-CC even in the presence of the threshold
phenomenon, as the target level will be set at α = 0.1. In the dense regime, we will simulate for each
A ∈ {3, 4, 5, 6}; in the sparse regime, we will simualte for each A ∈ {4, 5, 6, 7}. By doing so, we can
capture the range of power over a variety of signal magnitudes.
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Figure 4: Realized power and FDP for the knockoffs simluations when β is sparse (specifically, |H1| = 10
and α = 0.1, so this is at the threshold). Each facet contains the averaged metrics over 100 replications;
shading indicates error bars. The short and long orange dashed lines in the FDP plots represent the
target FDR (0.1) and the FDR bound with Monte-Carlo error (0.11), respectively.

Methods. The objective is to compare the derandomized knockoffs procedure before and after boosting
at the target FDR level α = 0.1, so we keep the hyperparameters and implementations the same between
the two procedures. Thus, we find it prudent to only detail the basic derandomized knockoffs procedure.
The Monte-Carlo details will only pertain to the boosted procedure.

For the dense β experiments, we use d ∈ {2, 10} copies of the knockoff design matrix to deran-
domize. We run experiments for multiple values of the hyperparameter αkn by choosing a factor
hkn ∈ {0.5, 0.75, 0.9, 1.0} and defining αkn = hknα = 0.1hkn. In contrast, for the sparse β experi-
ments, we use d ∈ {10, 30} copies of the knockoff design matrix to derandomize and instead consider
hkn ∈ {0.9, 1.0, 1.2, 1.5}. We consider a range of hkn to show that e-BH-CC empirically leads to uni-
form improvements in power. Further, to combat the threshold phenomenon it intuitively helps to have
αkn > α so that the threshold T is lower and the number of nonzero e-values is consequently higher (to
demonstrate this, we let hkn range from below to above 1). The reason for αkn ≤ α in the dense β case
comes from the extensive experiments in the original derandomized knockoffs paper (Ren and Barber,
2024).

Knockoffs details. When sampling the knockoff design matrix, we use Equation (3.2) in Candès et al.
(2018), where the S-matrix is constructed via the minimum variance-based reconstructibility criterion
(see Definition 3.1 in Spector and Janson (2022)). We compute the lasso-coefficient difference (Equation
(3.7), Candès et al. (2018)) as the feature importance measure. To avoid a computational slowdown from
having to repeat cross-validation steps for each call of LASSO regression, we use a separate independently-
sampled dataset (n = 500) as a “hold-out dataset” to pre-compute the λ regularization parameter. This
pre-computation is repeated for every replication per experiment.

We also use a variant of the threshold T in (17) which Ren and Barber (2024) argue lead to a uniform
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Figure 5: Realized power and FDP for the knockoffs simluations when β is sparse (specifically, |H1| = 9
and α = 0.1, so this is below the threshold). The details are otherwise the same as in Figure 4.

improvement in power for derandomized knockoffs. The alternative threshold

T
(k)
alt := inf

t > 0:
1 +

∑
j∈[m] 1

{
W

(k)
j ≤ −t

}
∑

k∈[m] 1
{
W

(k)
k ≥ t

} ≤ αkn or
∑
j∈[m]

1 {Wj ≥ t} < 1

αkn


is an “early-stopping” version—when the original threshold is infinite (and all the e-values will be zero),
using the alternative stopping time can only increase the e-values. We use T (k)

alt to give the base procedure
some more power, while still observing that there is a large power gap to recover.

In our implementation, we frequently make use of the knockpy Python package, which is a Python
implementation of the knockoffs procedure (Spector and Janson, 2022). We build on their functionality
to implement derandomized knockoffs.

Computational details. We again use a hybrid AVCS formulation to control the Monte-Carlo error
(see Section 4.3 for details). The first 1200 samples (in batches of 100) are used to construct the exact
AVCS, while the next 800 samples are used to construct the asymptotic AVCS. After 2000 total samples,
if the resulting AVCS still contains zero we stop early and fail to boost.

In addition, we will filter to cut down the number of e-values which we attempt to boost. For all
experiments, we filter out all j such that ej = 0, since they see no benefit from boosting. For d = 30, we
will additionally filter using

M = {j : β̂LASSO
j ̸= 0} ∪ {j : pregressionj ≤ α},

where β̂LASSO is the estimated coefficient vector obtained from LASSO regression on (X,Y ) and
pregressionj is the p-value corresponding to the jth covariate, derived from running OLS with intercept.
The filter M attempts to capture covariates which are significant to the outcome while avoiding being
too strict. Lastly, we chooose α0 = 0.1 · α = 0.01 and use αAVCS as described in Algorithm 3, replacing
m with the size of the filter.

20



hkn = 0.5 hkn = 0.75 hkn = 0.9 hkn = 1

d
=

2
d

=
10

3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

3 4 5 63 4 5 63 4 5 63 4 5 6

signal strength

po
w

er

procedure

e−BH

e−BH−CC

MX knockoffs

hkn = 0.5 hkn = 0.75 hkn = 0.9 hkn = 1

d
=

2
d

=
10

3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6

0.00
0.02
0.04
0.06
0.08
0.10
0.12

0.00
0.02
0.04
0.06
0.08
0.10
0.12

3 4 5 63 4 5 63 4 5 63 4 5 6

signal strength

fd
p

procedure

e−BH

e−BH−CC

MX knockoffs

Figure 6: Realized power and FDP for the knockoffs simluations when β is dense (|H1| = 25). The
details are otherwise the same as in Figure 4.

Experiments and results. We run 100 replications for each choice of A, z, d, hkn. Each replication
consists of constructing the basic derandomized knockoffs e-values and boosting these e-values using
conditional calibration. In addition, for each choice of A and z, we run the original model-X knockoff
filter (with the same implementation as derandomized knockoffs). This serves as a baseline and a
demonstration of the power loss created by derandomization; the difference between the two power curves
(shown in Figures 5, 4, and 6) of original knockoffs and derandomized knockoffs illustrates this power
gap. We find that using e-BH-CC on the derandomized knockoffs e-values closes the gap, sometimes
even exhibiting comparable-to-better power than the original knockoffs filter. However, we stress that
the comparison between e-BH-CC and original knockoffs is technically an apples-to-oranges comparison,
as the latter is a randomized procedure. For each procedure, we record its power and false discovery
proportion (FDP) and plot their means per setting on the aforementioned figures.

The results of the dense setting experiment are shown in Figure 6. Even when d = 2, the drop in
power exhibited by derandomized knockoffs is significant. However, e-BH-CC is able to improve the
power for all choices of d and αkn. The power drop, and subsequent power gain from boosting, are even
more apparent when d = 10. The FDR is controlled well below the theoretical Monte-Carlo-adjusted
error.

The results of the sparse setting experiments are shown in Figures 4 and 5. The setting of Figure 4,
where |H1| = 1/α = 10, experiences a major power drop over all signal amplitudes for both d = 10, 30.
The resulting power gain from e-BH-CC is large—for d = 10, the power is comparable to the original
knockoffs filter, while for d = 30, the power looks to be marginally better.

The setting of Figure 4, where the threshold phenomenon is in full swing (as |H1| < 1/α = 10),
shows an even larger contrast between the three procedures. When hkn ≥ 1 and for either d ∈ {10, 30},
derandomized knockoffs shows near 0 power. The original knockoffs procedure also exhibits lower power
than in the case where |H1| = 10. Using e-BH-CC leads to an extremely large power gain over e-BH-CC,
going from near-zero power to near-full power for high signal amplitudes. Furthermore, e-BH-CC has
much better performance than the regular knockoffs filter. These results suggest that e-BH-CC does not
experience a phase transition at the threshold in the same way that the knockoffs filter does. The power
curves of e-BH-CC between Figures 4 and 5 differ slightly, while that of the knockoffs filter differ greatly,
faltering when |H1| < 1/α.
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Finally, the results reiterate that even with the asymptotic AVCS trick, we still attain empirical FDR
control at α uniformly over all choices of hyperparameters.

6 Example: conformalized outlier detection
Given a set of data, we consider the task of identifying the units whose distributions differ from the
that of a reference dataset. This problem is known as outlier detection, and it is a fundamental task
in many fields. For example, in finance, an important task is to detect the fraud user activities in
transaction data (Ahmed et al., 2016); in medical diagnosis, it is crucial to identify the patients whose
symptoms/lab results are different from the normal population (Tarassenko et al., 1995; Cejnek et al.,
2021); in proteomics, neuroscientists are interested in selecting the proteins that have higher levels of
expression in the treatment condition compared with the negative controls (Shuster et al., 2022; Gao
and Zhao, 2023). More generally, in some applications, the inliers (e.g., the non-fraud user activities)
may follow different distributions in the reference and test datasets—this could happen if the reference
dataset is collected with some preferences based on observed covariates. For example, one might include
more individuals from the minority groups in the reference dataset to ensure representation. In these
cases, the goal is then to distinguish the outliers from the inliers given an identifiable distribution shift
in the inliers.

Formally, let Z = (X,Y ) denote a unit, where X ∈ X is the covariates and Y ∈ Y is the response.
Assume that we are given a calibration dataset Dcalib = {Zi}ni=1 that are assumed to be i.i.d. drawn
from some distribution P . For a test dataset of independent units Dtest = {Zn+j}mj=1, the objective is
to decide whether each unit Zn+j follows from Q, where

dQ

dP
(z) = w(x)

for some known weight function w : X → R+ (where dQ
dP denotes the Radon-Nikodym derivative). Here,

we are restrcting our attention to the distribution shift in the inliers that is entirely driven by the
observable covariates. As a special case, if w(z) ≡ 1 (such that Q = P ), we are back to the (vanilla)
ourlier detection problem where the goal is to select test units that are different from the calibration
units in distribution.

We consider this problem under the multiple testing framework, where we can define for each j ∈ [m]
the null hypothesis

Hj : Zn+j ∼ Q;

i.e., Zn+j is an inlier. By rejecting Hj , we are expressing the belief that Zn+j is an outlier in the dataset;
the goal is to choose a subset of these hypotheses to reject while controlling the FDR.

This multiple testing problem has been studied in Bates et al. (2023) for P = Q, and generalized
by Jin and Candès (2023) to allow for the covariate shift in the inliers. The methods proposed therein
are based on the so-called (weighted) conformal p-values (Vovk et al., 2005). In what follows, we are to
introduce the methods of conformalzed outlier detection, establish their equivalent e-BH interpretations,
and then describe how to use conditional calibration to boost their power.

Throughout, we assume that we have access to a fixed nonconformity score function V : Z → R that
assigns a score to each unit in {Zi : i ∈ [n+m]} such that a larger score translates to more evidence of
being an outlier (though, it need not be accurate to guarantee FDR control). For example, V can be
some model fitted on independent set-aside data.

6.1 Warm-up: conformal p-values and e-values
At its very simplest, conformalized outlier detection (with no covariate shift) uses Dcalib and V to
construct a p-value for each unit in Dtest. Using the shorthand Vi := V (Zi) for i ∈ [n+m], the conformal
p-value for Hj can be constructed as follows:

pj =
1 +

∑n
i=1 1 {Vi ≥ Vn+j}

n+ 1
, ∀j ∈ [m]. (21)

It can be verified that under Hj , pj is super-uniform, making it a valid p-value. In addition, under the
alternative hypothesis, pj is expected to be smaller—Vn+j should tend to be larger than the scores of the
“conforming” calibration units. In the case of ties, we can add randomized tiebreakers to the numerator
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in order to attain exact uniformity. Finally, Bates et al. (2023) show that although the conformal p-values
are not independent, they are PRDS, so applying BH to the conformal p-values (p1, . . . , pm) will still
control the FDR.

We now proceed to construct a collection of conformal e-values. First, define

T = inf

{
t ∈ {Vi}n+m

i=1 :
m

n+ 1
·

1 +
∑n

i=1 1 {Vi ≥ t}
(
∑m

j=1 1 {Vn+j ≥ t}) ∨ 1
≤ α

}
. (22)

Using this threshold (which finds the smallest rejection threshold for the scores that controls an estimate
of the FDR, similar to the model-X knockoff filter), we can construct a conformal e-value per hypothesis:

ej = (n+ 1) · 1 {Vn+j ≥ T}
1 +

∑n
i=1 1 {Vi ≥ T}

, ∀j ∈ [m]. (23)

As we shall show later in Proposition 8, the evalue ej defined above satisfies E[ej ] ≤ 1 for all j ∈ H0.
Furthermore, applying e-BH to them will yield the same rejection set as applying BH to the conformal
p-values defined in (21).
Remark 2. Such an e-value construction (with a slight adjustment to the threshold T ) was proposed
in Bashari et al. (2024), whose authors use a martingale argument to prove that the conformal e-values
are generalized e-values (Definition 1). By slightly modifying their proof strategy, we can show that the
conformal e-values in the form of (23) are strict e-values, for a general class of thresholds including the
one in (22) and the one in Bashari et al. (2024). The threshold in (22) is a special case that leads to the
equivalence between BH and e-BH.
Proposition 8. Suppose P = Q. Given calibration data Dcalib and test data Dtest, construct the
conformal p-values p1, . . . , pm using (21) and conformal e-values e1, . . . , em using (23). Let RBH :=
RBH(p1, . . . , pm) and Re-BH := Re-BH(e1, . . . , em) be the rejection sets obtained by BH and e-BH, respec-
tively, at some FDR control level α ∈ (0, 1). The following statements hold:
(1) E[ej ] ≤ 1 for any j ∈ H0;
(2) RBH = Re-BH.

The proof of Proposition 8 is provided in Appendix A.5.
Remark 3. Recall that one of the major sources e-BH’s slackness is the inequality 1{ej ≥ m

α|R|} ≤
α|R|ej/m. With the threshold in (22), e-BH is almost tight in this step: ej is either 0 or (n + 1)/(1 +∑

i∈[n] 1{Vi ≥ T}); the nonzero value is very close to the e-BH threshold m/(α
∑

j 1{Vn+j ≥ T}) by the
definition of T . This, however, is no longer the case when we extend this result to the weighted conformal
e-values, or when one combines two e-values. In these cases, our conditional calibration method can be
used to fill the gap and boost the power of e-BH.
Remark 4. As a side note, the selection set R̂BH is also proposed by Gao and Zhao (2023) in a slightly
different context. One might also notice that a third way to define the selection set is via R̂thres = {j ∈
[m] : Vn+j ≥ T}, which is indenpendently proposed in Weinstein et al. (2017) and Mary and Roquain
(2022) under different settings. It turns out this selection set R̂thres is also equivalent to R̂BH and R̂e-BH,
which is implied by our proof of Proposition 8.

6.2 Extension to covariate shift
We now return to the more general setting, where the inliers in Dcalib and Dtest are respectively drawn
from distributions P and Q that can be different due to a covariate shift. Recall that we assume that the
Radon-Nikodym derivative between P and Q is known to be w(x)—a function of only the covariates.

For such a setting, Tibshirani et al. (2019); Hu and Lei (2023); Jin and Candès (2023) have defined
weighted analogues of the p-values in (21):

pj =
w(Xn+j) +

∑n
i=1 w(Xi)1 {Vi ≥ Vn+j}

w(Xn+j) +
∑n

i=1 w(Xi)
, ∀j ∈ [m]. (24)

It can be shown that pj is still super-uniform and is thus valid. To achieve exact uniformity, we can
again extend the construction by using random tie-breakers.

Jin and Candès (2023) show that the weighted conformal p-values no longer satisfy the PRDS condi-
tion, which means BH no longer guarantees FDR control when applied to weighted conformal p-values.
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The authors propose a new procedure, called weighted conformal selection (WCS), which provably con-
trols the FDR. We instead present a more straightforward e-BH alternative that is almost equivalent
to (if not more powerful than) WCS. We will define weighted conformal e-values, which are weighted
analogues of (23), and run e-BH. Similar to their unweighted versions, we first define the following
hypothesis-specific thresholds: for ∀j ∈ [m],

Tj = inf

{
t ∈ {Vi}n+m

i :
m

w(Xn+j) +
∑n

i=1 w(Xi)
·
w(Xn+j) +

∑n
i=1 w(Xi)1 {Vi ≥ t}

(
∑m

k=1 1 {Vn+k ≥ t}) ∨ 1
≤ α

}
. (25)

Using Tj , we then construct the e-value ej :

ej =

(
w(Xn+j) +

n∑
i=1

w(Xi)

)
· 1 {Vn+j ≥ Tj}
w(Xn+j) +

∑n
i=1 w(Xi)1 {Vi ≥ Tj}

, ∀j ∈ [m]. (26)

One can notice that in the presence of no covariate shift, where w(x) ≡ 1, the weighted conformal e-
values coincide with their unweighted versions. The next proposition shows that the weighted conformal
e-values defined above are still valid e-values; its proof is deferred to Appendix A.7.
Proposition 9. For each j ∈ [m], construct ej by (26) with T defined in (25). Then ∀j ∈ H0,E[ej ] = 1.

By Proposition 9, applying e-BH to the weighted conformal e-values will control the FDR, but unlike
the previous case, this is no longer equivalent to applying BH to the weighted conformal p-values.

The rejection set of e-BH, however, is (almost) identical to that of WCS with deterministic pruning.
By “almost identical”, we mean the following: Jin and Candès (2023) also propose an e-BH interpretation
of WCS, and the corresponding e-values therein are provably no greater than the e-values constructed
here (but the gap is usually very small). A detailed discussion on the connection will be delegated to the
Appendix B. Effectively, we can expect the two methods to deliver similar empirical performance.

In practice, the power of WCS can be improved at the cost of randomization: instead of determinis-
tically pruning to get the resulting rejection set, a randomized pruning rule can be used instead (Jin and
Candès, 2023). The power gap between randomized and regular WCS can be quite significant in certain
problem settings. This gap and the e-BH equivalence with WCS suggests that e-BH-CC has the potential
to exhibit much higher power without invoking randomization. The next subsection demonstrates how
we can fit the framework of conditional calibration to conformalized outlier detection.

6.3 Conditional calibration for weighted conformal selection
As in the other sections, we first identify the sufficient statistic for conditioning then prove that the
constructed resampled e-values follow the desired conditional distribution. The proof of Proposition 9
suggests that the statistic Sj = (Ej , {Zn+k}k∈[m]\{j}) can serve as a conditioning statistic, where Ej is
the unordered set of {Z1, . . . , Zn, Zn+j} with repetitions allowed.

Formally, fix j ∈ [m] and choose the sufficient statistic Sj = (Ej , {Zn+k}k∈[m]\{j}) of the combined
data Dcalib,Dtest. Conditional on Sj , resample

Z̃n+j ∼ Zn+j | Ej , {Zn+k}k∈[m]\{j} ∼
∑
Z∈Ej

w(X)∑
Z′∈Ej

w(X ′)
· δZ , (27)

where Z = (X,Y ), Z ′ = (X ′, Y ′), and δa denotes the point mass at a. For the remaining elements
{Z ∈ Ej : Z ̸= Z̃n+j}, arbitrarily assign them to Z̃1, . . . , Z̃n without replacement by random permutation
(their order will not matter—observe that T does not depend on the ordering of Dcalib). Using the
resampled calibration dataset D̃(j)

calib = {Z̃k}k∈[n] and resampled test dataset D̃(j)
test = {Z̃n+k}k∈[m], where

Z̃n+k = Zn+k for k ̸= j, construct the thresholds (for each k ∈ [m]) defined in (25), denoted T̃
(j)
k to

highlight its resampled nature. We then define the resampled e-values

ẽ
(j)
k =

(
w(X̃n+j) +

n∑
i=1

w(X̃i)

)
·

1{V (Z̃n+k) ≥ T̃
(j)
k }

w(X̃n+k) +
∑n

i=1 w(X̃i)1{V (Z̃i) ≥ T̃
(j)
k }

, ∀k ∈ [m], (28)

where again we denote Z̃i = (X̃i, Ỹi) for i ∈ [n+m].
We express the correctness of our resampling scheme in the following proposition.
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Figure 7: Realized power and FDP of the simulated experiments for unsupervised outlier detection. Each
plot contains the averaged metrics over 1,000 replications. The orange dashed lines in the FDP plots
represent the target FDR (0.1) and the FDR bound with Monte-Carlo error (0.11).

Proposition 10. For each j ∈ [m], choose sufficient statistic Sj = (Ej , {Zn+k}k∈[m]\{j}) and construct
the thresholds T̃

(j)
k and their corresponding e-values ẽ

(j)
k as defined in (28). Then(

ẽ
(j)
1 , . . . , ẽ(j)m

)
| Sj ∼ (e1, . . . , em) | Sj

under the null hypothesis Hj : Zn+j ∼ Q.

Furthermore, by choosing independent assignments of (Z̃n+j , Z̃1, . . . , Z̃n) by (27) for each resample,
the corresponding resampled e-values are i.i.d. conditional on Sj.

The proof of Proposition 10 is provided in Appendix A.8.

6.4 Simulation studies
We run simulations in the unsupervised outlier detection problem (i.e., Zi = Xi for each i ∈ [n + m])
in the presence of covariate shift to show the power gained by using e-BH-CC on weighted conformal
e-values (26).

Settings. We closely follow the outlier detection setup in Jin and Candès (2023). The authors state
that as n,m get larger, the selection set of WCS approaches that of BH. To show the benefit of our
method, we take n = m = 200 so that we avoid that limiting regime. In addition, to get a sense of
the power drop and subsequent power gain over both sparse and dense outlier regimes, we vary the
proportion of outliers π1 ∈ {0.09, 0.1, 0.2, 0.4}.

At the beginning of each experiment, we sample 50 i.i.d. draws from Unif([−3, 3]50) to get an initial
subset of points W ⊆ R50. For each of the π1n outliers in the test set, generate them i.i.d. as Xn+j =√
aLn+j + Wn+j , where Ln+j ∼ N50(0, I), Wn+j ∼ Unif(W) and the signal strength a varies through
{2, 2.25, 2.5, . . . , 4}. The inliers of the test set are instead generated i.i.d. as Xn+j = Ln+j + Wn+j ,
whose distribution we will denote as QX . The calibration dataset, all of which are inliers, is generated
i.i.d from PX , where dQX

dPX
(x) = w(x) ∝ σ(x⊤θ). Here, σ(·) is the sigmoid function and θ ∈ R50 is defined

as θj = (0.3, 0.3, 0.2, 0.2, 0.1, 0.1, 0, . . . , 0). As Jin and Candès (2023) state, this choice reflects a situation
where the calibration dataset is sampled weighted by preference given by a logistic function of X.

Methods. We construct weighted conformal e-values as in (26), using w(·) as described above and V (·)
equal to a one-class SVM trained on an independent hold-out set of 500 calibration inliers, weighted by
w(·). We use the implementation found in the scikit-learn Python package, choosing the default rbf
kernel. We then run e-BH and e-BH-CC, both at level α = 0.1, on the resulting e-values.

Computational details. We again use a hybrid AVCS formulation to control the Monte-Carlo error
(see Section 4.3 for details). The first 1,500 samples (in batches of 100) are used to construct the exact
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AVCS, while the next 1,000 samples are used to construct the asymptotic AVCS. After 2,500 total
samples, if the resulting AVCS still contains zero we stop early and fail to boost the particular e-value.

Experiments and results. For each choice of π1 and a, we run 1,000 replications of both e-BH and
e-BH-CC. Figure 7 reports their mean power and FDP over varying signal strengths for each choice of
π1. e-BH-CC is able to improve upon e-BH while continuing to control the FDR at α, regardless of the
density of outliers. It is worth noting that there is a larger power gain when the outliers become sparser
in the test dataset, reflecting the notion that the difficulty of the testing problem and the looseness of
e-BH are interconnected.

7 Real data analysis
We apply our method to the national study of learning mindset (NSLM) observational dataset (Carvalho
et al., 2019), with the goal of identifying individuals whose counterfactuals satisfy certain conditions. In
this study, the intervention is to instill students with a learning mindset—the belief that intelligence can
be developed, as opposed to being fixed—and the outcome of interest is their academic performance. The
NSLM dataset contains observations on n = 10,391 students, among which 3,384 students received the
intervention and 7,007 students did not. Each student is associated with a set of 11 covariates, including
four student-level covariates and seven school-level covariates (more details about the covariates can be
found in Table 1 of Carvalho et al. (2019)).

Problem setup. For each individual, denote by X the covariates, T ∈ {1, 0} the intervention status
(1 corresponds to receiving the intervention and 0 otherwise), and Y ∈ R the academic performance.
To We adopt the potential outcome framework (Rubin, 1974), defining the potential outcomes Y (1) and
Y (0) as the academic performance of a student with and without the intervention, respectively. Under
the standard stable unit treatment value assumption (SUTVA) (Imbens and Rubin, 2015), the observed
outcome Y = TY (1)+(1−T )Y (0). Throughout, we also adopt the strong ignorability assumption (Imbens
and Rubin, 2015), which states that

(Y (1), Y (0)) ⊥⊥ T |X.

Given the dataset {(Xi, Ti, Yi)}i∈[n], we seek to detect the individuals with large Y (1) in the control
group, and those with small Y (0) in the treatment group.

To proceed, we randomly split the dataset into three folds: the training fold Dtrain, the calibration
fold Dcalib, and the test fold Dtest. In what follows, we shall slightly abuse the notation and let Dtrain,
Dcalib, and Dtest also refer to the corresponding index sets. Define Dcalib(t) = {i ∈ Dcalib : Ti = t} and
Dtest(t) = {i ∈ Dtest : Ti = t} for t = 0, 1. We consider the following two tasks:

(1) ATC-type: find a subset of Dtest(0) whose Y (1) > 0.3 with FDR controlled at level α.
(2) ATT-type: find a subset of Dtest(1) with Y (0) < −0.3 with FDR controlled at level α.

In what follows, we focus on the ATC-type task, with the ATT-type task following by symmetry.
Following Jin and Candès (2023), we consider this problem under the multiple testing framework, where
the null hypothsis for any j ∈ Dtest(0) is

Hj : Yj(1) ≤ 0.3.

Here, rejecting Hj corresponds to identifying individual j who could have a large outcome. In slight
contrast to the standard multiple testing setting, the null hypothesis Hj is random (see Jin and Candès
(2023) for a detailed discussion) and we focus on the FDR defined as

FDR[R] = E
[∑

j∈H0
1{j ∈ R}

|R| ∨ 1

∣∣∣∣H0

]
.

The conformal e-values. For this problem, we adopt the data {i ∈ Dcalib : Ti = 1, Yi ≤ 0.3} as
the calibration data. For the test points, those with Y (1) ≤ 0.3 are the inliers while the others are the
outliers—our aim is to detect the outliers. Note that the inliers in the calibration set follow the distri-
bution PX,Y (1) |T=1,Y (1)≤0.3, while the inliers in the test set follow the distribution PX,Y (1) |T=0,Y (1)≤0.3.
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We can compute that the likelihood ratio is

dPX,Y (1) |T=0,Y (1)≤0.3

dPX,Y (1) |T=1,Y (0)≤0.3
∝ 1− e(x)

e(x)
.

Above, e(x) := P(T = 1 |X = x) is called the propensity score function. Since NSLM is an observational
dataset, the propensity score function is unknown. We can nevertheless obtain an estimate of the
propensity score function, ŵ(x), with the training fold Dtrain by regressing T on X. On Dtrain, we
can also determine the nonconformity score function V (x, y) that is assumed to be non-increasing in y.
With the fitted functions, Jin and Candès (2023) construct the conformal p-value for each j ∈ Dtest(0) as
in (24). Parallelly, we can define the conformal e-values as in (26), The result in Appendix B implies that
applying e-BH to the conformal e-values is almost equivalent to—if not more powerful than—applying
WCS to the conformal p-values.

Implementation and results. In our implementation, |Dtrain| = 8,000, |Dcalib| = 1,000, and |Dtest| =
1,000. We use random forests to estimate the propensity score function e(x) and the regression func-
tion m̂(x) for Y (1) |X = x with Dtrain, where the random forests algorithm is implemented with the
scikit-learn package in Python (Pedregosa et al., 2011). For each sample split, both WCS (its e-BH
equivalent) with deterministic pruning and e-BH-CC are applied at FDR levels α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
For reference, we also implement WCS with heterogeneous pruning—this is not meant to be compare
with our method (since it is a randomized procudure), but rather to show the potential improvement
over base WCS that e-BH-CC could achieve.

For e-BH-CC, we take αCC to be a different value than α (recall Remark 1), where αCC = 1.1 · α.
The AVCS-approximated e-values are adopted with α0/α = 0.0001; the first 600 samples (in batches of
100) are used for constructing the non-asymptotic AVCS, and the next 400 for the asymptotic AVCS.
If no conclusions can be drawn within 1000 Monte Carlo samples, we stop early and fail to boost the
particular e-value. Figure 8 reports the average number of discoveries over 200 sample splits in the
treated and control groups, respectively. We can see that e-BH-CC improves substantially over WCS
with deterministic pruning, and is comparable to WCS with heterogeneous pruning, sending the message
that using conditional calibration reclaims the power gap between the deterministic pruning and the
randomized pruning.

procedure WCS.dtm e−BH−CC WCS.hete
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Figure 8: Number of identified students with positive treatment effects in the treatment group (left) and
the control group (right) from the NSLM dataset. The results are averaged over 200 sample splits.

8 Discussion
In this paper, we introduce a framework to improve the power of e-BH via conditionally calibrating
the e-values. Through three classes of multiple testing problems, we demonstrate how the proposed
method can bring substantial power gains while continuing to control the FDR. We end this paper with
a discussion on the potential applications of the proposed method, as well as future research directions.

Application to other selective inference problems Aside from the three examples discussed in
this paper, we envision our framework to be useful for boosting many more selective inference procedures.
For example, when testing m hypotheses with independent p-values p1, p2, . . . , pm, Li and Zhang (2023)
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propose combining the rejection set of BH and SeqStep+ (Barber and Candès, 2015) through their e-
value representations, and the resulting procedure is shown to be consistently better than the worse
of BH and SeqStep+. For this procedure, our framework can immediately be applied by recognizing
that pj | p−j ∼ Unif([0,1]) under the null hypothesis. For another example, our framework can also
be applied to other conformalized selection procedures (e.g., Bashari et al. (2024); Liang et al. (2022))
by considering similar sufficient statistics as introduced in Section 6. Lastly, we can even apply this
framework to settings where p-values with arbtirary dependence are generated, as long as a viable
sufficient statistic can be identfied. For example, Fithian and Lei (2022) describe problems such as
edge testing in Gaussian graphical models and multiple comparisons with binary outcomes and identify
possible sufficient statistics. By using a p-to-e calibrator (Vovk and Wang, 2021), we can construct
e-values from the p-values and translate the problem into the e-BH framework. The p-to-e calibrator
typically leads to power loss, but by using e-BH-CC we can likely regain the lost power.

Estimating the null proportion When the input e-values are strict e-values, e-BH as well as e-BH-
CC controls the FDR at the level π0α, where π0 is the fraction of null hypotheses. Such a guarantee can
be too conservative, especially when the signal is sparse, i.e., π0 ≪ 1. One possible solution, borrowed
from Fithian and Lei (2022), is to find an estimator π̂0 of π0, such that E[ej/π̂0] ≤ 1/π0, and then modify
the ϕj function to be

ϕj(c;Sj) = E

m

α
·
1
{
cej ≥ m

α|R̂j(e)|

}
|R̂j(e)|

− ej
π̂0

∣∣∣∣Sj

 .

We then define the boosted e-values and run the e-BH as in the current version. The challenge in this
scheme boils down to finding the estimator π̂0. It would be interesting to investigate the construction of
π̂0 in different problem settings.

Boosting via auxiliary statistics Our current boosting framework seeks for a multiplicative boosting
factor ĉj . It would be interesting to investigate other boosting forms to fill in the gap. For example,
suppose for each j ∈ [m], we have another statistic Wj ∈ R for testing Hj , where for simplicity, we assume
that a large value of Wj suggest evidence against the null. We can then consider the “Wj-assisted” ϕ
function:

ϕj(c;Sj) = E

m

α
·
1
{
ej ≥ m

α|R̂j(e)|
or Wj ≥ c

}
|R̂j(e)|

− ej

∣∣∣∣Sj

 .

Assuming we can (numerically) evaluate ϕ(c;Sj), we proceed to find the critical value ĉj :

ĉj := sup
{
c ∈ R : ϕj(c;Sj) ≤ 0

}
.

A new collection of e-values boosted by Wj can be constructed as

eW,b
j =

m

α
·
1
{
ej ≥ m

α|R̂j(e)|
or Wj ≥ ĉj

}
|R̂j(e)|

.

Since ϕ(+∞;Sj) ≤ 0, E[eW,b
j ] ≤ 1 and Re-BH(eW,b) ⊃ R(e). The proposed e-BH-CC is a specific

instance of this formulation, where W−1
j = m

α|R̂j(e)|
/ej and the threshold would be 1

c . A future research
direction is to investigate powerful choices of auxiliary statistics in different scenarios, and whether they
may exhibit higher power than simply using e-BH-CC.
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A Technical proofs

A.1 Proof of Theorem 1
Note that ĉj and ϕj(ĉj ;Sj) are both deterministic functions of Sj . For any j ∈ H0, we can write the
expectation of ebj as

E[ebj ] = E
[
1{ϕj(ĉj ;Sj) ≤ 0} · E[ebj |Sj ] + 1{ϕj(ĉj ;Sj) > 0} · E[ebj |Sj ]

]
.

When ϕj(ĉj ;Sj) ≤ 0, by construction of ebj we have

E[ebj |Sj ] = E

[
m

α|R̂j(e)|
1

{
ĉjej ≥

m

α|R̂j(e)|

} ∣∣∣∣Sj

]
= ϕj(ĉj ;Sj) + E[ej |Sj ] ≤ E[ej |Sj ].

When ϕj(ĉj ;Sj) > 0, we let ĉj,t = ĉj − 1/t. Then we have determistically that

1
{
ĉj · ej > m

α|R̂j(e)|

}
= lim

t→∞
1
{
ĉj,t · ej ≥ m

α|R̂j(e)|

}
.

As a result,

E[ebj |Sj ] = E

[
m

α|R̂j(e)|
1

{
ĉjej >

m

α|R̂j(e)|

} ∣∣∣∣Sj

]

= E

[
lim
t→∞

m

α|R̂j(e)|
1

{
ĉj,tej ≥

m

α|R̂j(e)|

} ∣∣∣∣Sj

]
(a)
= lim

t→∞
E

[
m

α|R̂j(e)|
1

{
ĉj,tej ≥

m

α|R̂j(e)|

} ∣∣∣∣Sj

]
= lim

t→∞
ϕ(ĉj,t;Sj)

(b)

≤ E[ej |Sj ].

Above, step (a) follows from the dominated covergence theorem and step (b) follows from the definition
of the critical value ĉj .

Combining the two cases, we have E[ebj ] ≤ E[ej ] for all j ∈ H0. Since (e1, . . . , em) are valid (resp.
generalized) e-values, the boosted e-values are valid (resp. generalized) e-values. The FDR control then
follows from the FDR control of the e-BH procedure.

A.2 Proof of Proposition 1
For each j ∈ H0, we have

E
[
eb,CI
j

]
= E

[
m1{Uj,K ≤ 0, ϕj(c̃j ;Sj) > 0}

α|R̂j(e)|

]
+ E

[
m1{Uj,K ≤ 0, ϕj(c̃j ;Sj) ≤ 0}

α|R̂j(e)|

]
.

Above, the first term can be bounded as follows:

E
[
m1{ϕj(c̃j ;Sj) > Uj,K}

α|R̂j(e)|

]
= E

[
m

α|R̂j(e)|
P
(
ϕj(c̃j ;Sj) /∈ Cj,K |Sj , e

)]
≤ E

[
m · αCI

α|R̂j(e)|

]
≤ α0/α.

As for the second term, we have

E
[
m1{Uj,K ≤ 0, ϕj(c̃j ;Sj) ≤ 0}

α|R̂j(e)|

]
≤ E

[
m1{ϕj(c̃j ;Sj) ≤ 0}

α|R̂j(e)|

]
= E

[
m1{c̃j ≤ ĉj , ϕj(ĉj ; sj) ≤ 0}

α|R̂j(e)|

]
︸ ︷︷ ︸

(i)

+E
[
m1{c̃j < ĉj , ϕj(ĉj ; sj) > 0}

α|R̂j(e)|

]
︸ ︷︷ ︸

(ii)

.
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Recalling that c̃j =
m

α|R̂j(e)|
/ej , we then have

(i) = E
[m1{ĉjej ≥ m

α|R̂j(e)|
, ϕj(ĉj ; sj) ≤ 0}

α|R̂j(e)|

]
= E

[
1
{
ϕj(ĉj ;Sj) ≤ 0

}
·
(
ϕj(ĉj ;Sj) + E[ej |Sj ]

)]
≤ E

[
1{ϕj(ĉj ;Sj) ≤ 0}ej

]
.

Next, we again take ĉj,t = ĉj − 1/t, and then we have

(ii) = E
[m1{ĉjej > m

α|R̂(e)|
, ϕj(ĉj ; sj) > 0

}
α|R̂j(e)|

]
= E

[
1{ϕj(ĉj ;Sj) > 0} · E

[
lim
t→∞

m1
{
ĉj,tej ≥ m

α|R̂j(e)|

}
|R̂j(e)|

∣∣∣∣Sj

]]
(a)
= lim

t→∞
E

[
1{ϕj(ĉj ;Sj) > 0} · E

[m1{ĉj,tej ≥ m

α|R̂j(e)|

}
|R̂j(e)|

∣∣∣∣Sj

]]
= lim

t→∞
E
[
1{ϕj(ĉj ;Sj) > 0} · E

[
ϕj(ĉj,t) + ej

∣∣Sj

]]
≤ E

[
1{ϕj(ĉj ;Sj) > 0}ej

]
,

where step (a) applies the dominated convergence theorem. Combining (i) and (ii), we have bounded
the second term by E[ej ], and therefore E[eb,CI

j ] ≤ E[ej ] + α0/α for any j ∈ H0, invoking the proof of
e-BH completes the proof.

Proof of Corollary 1 If Cj,K is a (1 − αCI) asymptotic confidence interval for ϕj(ĉj ;Sj), it suffices
to modify the upper bound of the first term in the proof of Proposition 1:

lim
K→∞

E
[
m1{ϕj(c̃j ;Sj) > Uj,K}

α|R̂j(e)|

]
= lim

K→∞
E

[
m

α|R̂j(e)|
P
(
ϕj(c̃j ;Sj) /∈ Cj,K |Sj , e

)]

= E

[
m

α|R̂j(e)|
lim

K→∞
P
(
ϕj(c̃j ;Sj) /∈ Cj,K |Sj , e

)]

≤ E
[
m · αCI

α|R̂j(e)|

]
≤ α0/α.

Again, the second step follows from the dominated convergence theorem.

A.3 Proof of Proposition 2
For any j ∈ H0, we have

E[eb,AVCS
j ] = E

[
m · 1{∃k, Uj,k ≤ 0}

α|R̂j(e)|

]

= E

[
m · 1{∃k, Uj,k ≤ 0, ϕj(c̃j ;Sj) > 0}

α|R̂j(e)|

]
+ E

[
m · 1{∃k, Uj,k ≤ 0, ϕj(c̃j ;Sj) ≤ 0}

α|R̂j(e)|

]

≤ E

[
m · 1{∃k, Uj,k < ϕj(c̃j ;Sj)}

α|R̂j(e)|

]
+ E

[
m · 1{ϕj(c̃j ;Sj) ≤ 0}

α|R̂j(e)|

]
.

Above, the first term is bounded by α0/α by the construction of {Cj,k}k≥1; the second term is bounded by
E[ej ] following exactly the same steps in the proof of Proposition 1. Now that E[eb,AVCS

j ] ≤ E[ej ]+α0/α,
invoking the proof of the e-BH procedure completes the proof.

Asymptotic anytime-valid confidence sequences The definition of an asymptotic anytime-valid
confidence sequence below is adapted from Waudby-Smith et al. (2021).

Definition 2 (Asymptotic anytime-valid confidence sequences (Asymp-AVCS)). We say that (θ̂k −
Lk, θ̂k + Uk)k≥1 centered around the estimators {θ̂k}k≥1 with Lk, Uk > 0 for any k ≥ 1 forms a (1− α)-
asymptotic anytime-valid confidence sequence for a parameter θ if there exists a non-asymptotic (1−α)-
anytime-valid confidence sequence (θ̂k − L∗

k, θ̂k + U∗
k )k≥1 such that

L∗
k/Lk

a.s.→ 1, U∗
k/Uk

a.s.→ 1.
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In practice, we can replace the (1−αAVCS)-AVCS with an Asymp-AVCS when k is sufficiently large.
The time-uniform coverage of the Asymp-AVCS has been established in Waudby-Smith et al. (2021)
under certain conditions, and we refer the readers to their work for more details.

A.4 Proof of Proposition 3
We can write the intermediate e-values eb,Sj := ebj1 {j ∈ S} , for j ∈ [m]. Decomposing the FDR as in
the proof of e-BH in (1), we see:

FDR[S] =
∑
j∈H0

E
[
1 {j ∈ S}
|S| ∨ 1

]
=

∑
j∈H0

E
[
1 {j ∈ S}
|S ∪ {j}|

]
(a)

≤
∑
j∈H0

E

1 {j ∈ S} · 1
{
ebj ≥ m

α|R̂j(e)|

}
|R(e) ∪ {j}|


(b)

≤
∑
j∈H0

E

1 {j ∈ S} · α|R̂j(e)|
m ebj

|R(e) ∪ {j}|


(c)
=

∑
j∈H0

α

m
E
[
1 {j ∈ S} ebj

]
(d)

≤ α.

Step (a) is due to R(e) ⊆ S (the denominator), and S ⊆ R(eb): if j ∈ S, we also have j ∈ R(eb)
and therefore ebj = m/(α|R̂j(e)|) by construction. Step (b) follows from the deterministic inequality
1{X ≥ t} ≤ X/t for t > 0 in the e-BH proof. Step (c) is from the definition R̂j(e) = R(e) ∪ {j}. Step
(d) follows since ebj1 {j ∈ S} is a valid e-value, as mentioned previously. Note that the entire inequality
chain will also hold when e are generalized e-values.

A.5 Proof of Proposition 4
Let ẽ = (edBH

1 /U1, . . . , em/Um), and Re-BH(ẽ) the selection set returned by the e-BH procedure applied
to ẽ. Let RdBH(p) denote the selection set of the dBH procedure with Uj ’s. We denote by ẽ(1) ≥ ẽ(2) ≥
. . . ≥ ẽ(m) the ordered statistics of ẽ in descending order. Let k∗ = |Re-BH(edBH)|, and recall that for
dBH

r∗ = max
{
r ∈ [m] :

∣∣{j ∈ R̂+ : Uj ≤ r/R̂j(p)}
∣∣ ≥ r

}
We can check that

ẽ(k) ≥
m

αk
⇐⇒

∣∣∣∣{j ∈ [m] : ẽj ≥
m

αk

}∣∣∣∣ ≥ k.

As a result, by the definition of k∗ and r∗,

k∗ = max
{
k ∈ [m] : ẽ(k) ≥

m

αk

}
= max

{
k ∈ [m] :

∣∣∣{j ∈ [m] : ẽj ≥
m

αk

}∣∣∣ ≥ k

}
= max

{
k ∈ [m] :

∣∣∣∣{j ∈ R̂+ :
m

αR̂j(p)Uj

≥ m

αk

}∣∣∣∣ ≥ k

}
= max

{
k ∈ [m] :

∣∣∣∣{j ∈ R̂+ : Uj ≤
k

R̂j(p)

}∣∣∣∣ ≥ k

}
= r∗,

where the second step follows from the construction of ẽj ’s. This leads to

Re-BH(ẽ) =
{
j ∈ [m] : ẽj ≥

m

αk∗

}
=

{
j ∈ [m] :

m1{j ∈ R̂+}
αR̂j(p)Uj

≥ m

αk∗

}
=

{
j ∈ R̂+ :

r∗

R̂j(p)
≥ Uj

}
= RdBH(p).
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The proof is therefore concluded.

A.6 Proof of Proposition 8
A.6.1 Proof of (a)

Define V to be the unordered collection of nonconformity scores
{
Vi : i ∈ [n + m]

}
. Let π be a

permutation of [n + m] such that Vπ(1) ≤ · · · ≤ Vπ(n+m), and let N(k) :=
∑

i∈[n] 1{Vi ≥ Vπ(k)},
R0(k) =

∑
j∈H0

1{Vn+j ≥ Vπ(k)}, and R1(k) =
∑

j∈H1
1{Vn+j ≥ Vπ(k)}. Consider the discrete time

filtration,

Fk = σ
(
V, {N(ℓ)}ℓ≤k, {R0(ℓ)}ℓ≤k, {R1(ℓ)}ℓ≤k

)
, for k ≥ 1. (29)

Instead of directly proving (a), we show the following stronger result. Suppose the conformal e-value
takes the following form:

ej = (n+ 1)
1{Vn+j ≥ T}

1 +
∑

i∈[n] 1{Vi ≥ T}
, for j ∈ [m]. (30)

Then ej is an e-value as long as T = Vπ(τ), where is τ a stopping time adapted to the filtration {Fk}k≥1.
Apparently, the threshold T defined in (22) satisfies the condition of Proposition 11, and therefore the
e-value is a strict e-value.

The stronger result is stated in the following proposition, followed by its proof.
Proposition 11. Under the setting of Proposition 8, let τ be a stopping time adapted to the filtration
{Ft}k≥1 defined in (29). Suppose the e-value takes the form defined in (30). Then we have E[ej ] ≤ 1,
for any j ∈ H0.

Proof. To start, we define for k ∈ N+ that

M(k) =

∑
j∈H0

1{Vn+j ≥ Vπ(k)}
1 +

∑
i∈[n] 1{Vi ≥ Vπ(k)}

=
R0(k)

1 +N(k)
,

where the last step is by the definition of R0(k) and N(k). We claim that M(k) is a supermartingale
with respect to the filtration {Fk}k≥1. To see this, consider the following two scenarios.

(1) When Vπ(k) = Vπ(k−1), we have N(k) = N(k−1) and R0(k) = R0(k−1), and thus E[M(k) | Fk−1] =
M(k − 1).

(2) When Vπ(k) > Vπ(k−1), we let ∆(k) =
∑

i∈[n+m] 1{Vi = Vπ(k−1)}, By the exchangeability of the
inliers, conditional on Fk−1, N(k) follows a hypergeometric distribution with parameters N(k −
1)+R0(k−1) (population size), N(k−1) (success states in the population), and N(k−1)+R0(k−
1) − ∆(k) (number of draws). As a result, by direct computation of the conditional expectation
with respect to the hypergeometric distribution (see e.g., Weinstein et al. (2017, Lemma 3.2)), we
have E[Mk | Fk−1] ≤Mk−1.

Combing the two cases, we have shown that M(k) is a supermartingale. Since τ is a stopping time with
respect to {Fk}k≥1, applying the optional stopping theorem leads to

E[Mτ ] ≤M1 =
|H0|
1 + n

. (31)

Note also that

E
[∑

j∈H0
1{Vn+j ≥ T}∑

i∈[n] 1{Vi ≥ T}

]
=

1

1 + n

∑
j∈H0

E[ej ] (32)

Combining (31) and (32) yields
∑

j∈H0
E[ej ] ≤ |H0|. Note also that τ is invariant to the permutation on

{Zn+j}j∈H0
, and thus by the exchangeability of {Zn+j}j∈H0

, we have E[ej ] ≤ 1 for any j ∈ H0.
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A.6.2 Proof of (2)

The statement is immediate from the following lemmas about T , the threshold defined in (22).

Lemma 1. R̂BH = {j ∈ [m] : Vn+j ≥ T}.

Proof. Let Vn+(1) ≥ Vn+(2) ≥ · · · ≥ Vn+(m) denote the ordered nonconformity test scores in the de-
scending order (with ties broken arbitrarily). By the definition of the conformal p-values, we also have
p(1) ≤ p(2) ≤ · · · ≤ p(m).

When R̂BH is empty, then for any t ≤ Vn+(1), let m(t) =
∑

j∈[m] 1{Vn+j ≥ t}. By the definition of
m(t), one can check that Vn+(m(t)) ≥ t and

m

n+ 1

1 +
∑

i∈[n] 1{Vi ≥ t}∑
j∈[m] 1{Vn+j ≥ t}

=
m

n+ 1

1 +
∑

i∈[n] 1{Vi ≥ t}
m(t)

=
mpm(t)

m(t)
> α.

The last step is because R̂BH = ∅. By the definition of T , we have T > Vn+(1), and thus R̂BH = {j ∈
[m] : Vn+j ≥ T}.

When R̂BH is nonempty, BH rejects the hypotheses corresponding to the R := |R̂BH| largest noncon-
formity test scores, where

R = max

{
r :

1 +
∑n

i=1 1
{
Vi ≥ Vn+(r)

}
n+ 1

≤ αr

m

}
.

Observe that the rejection rule is equivalent to rejecting all nonconformity test scores that are at least

v̂ = max

{
v :

1 +
∑n

i=1 1 {Vi ≥ v}
n+ 1

≤ α · |{j ∈ [m] : Vn+j ≥ v}|
m

}
.

We can rearrange the condition inside the maximum for the equivalent statement

v̂ = max

{
v :

m

n+ 1
·
1 +

∑n
i=1 1 {Vi ≥ v}

|{j ∈ [m] : Vn+j ≥ v}|
≤ α

}
.

When the rejection set is non-empty, v̂ and T coincide. Thus, R̂BH = {j : Vn+j ≥ T}.

Lemma 2. R̂e-BH = {j ∈ [m] : Vn+j ≥ T}.

Proof. First, note that when Vn+j < T , the corresponding e-value is 0 and will never be rejected. Thus,
we have R̂e-BH ⊆ {j ∈ [m] : Vn+j ≥ T}. To prove the reverse inclusion, we can assume without loss of
generality that {j ∈ [m] : Vn+j ≥ T} is nonempty (since otherwise the inclusion is trivial). Observe that
when Vn+j ≥ T , the e-value is positive and takes the value

ej =
n+ 1

1 +
∑n

i=1 1 {Vi ≥ T}

which does not depend on the index j (i.e., the nonzero e-values take the same value). Taking the
definition of T directly, we see that

n+ 1

1 +
∑n

i=1 1 {Vi ≥ T}
≥ m

α · |{j ∈ [n] : Vn+j ≥ T}|
.

However, R := |{j ∈ [n] : Vn+j ≥ T}| is exactly the number of nonzero e-values in our collection. Each
of the R nonzero e-values take the same value, which is bounded below by m

aR . By the e-BH procedure,
each of these e-values will be selected, proving the reverse inclusion R̂e-BH ⊇ {j : Vn+j ≥ T}.

Since the two lemmas show equality of R̂BH and R̂e-BH to the same rejection set, we conclude the desired
proposition.
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A.7 Proof of Proposition 9
For each j ∈ [m], let us define an alternative threshold to (25):

T̂j = inf

{
t ∈ {Vi}n+m

i=1 :
m

w(Xn+j) +
∑n

i=1 w(Xi)
·
w(Xn+j)1 {Vn+j ≥ t}+

∑n
i=1 w(Xi)1 {Vi ≥ t}

1 +
∑

k∈[m]\{j} 1 {Vn+k ≥ t}
≤ α

}
.

The significance of the above threshold is that on the event {Vn+j ≥ Tj}, Tj = T̂j . To see this, we first
note that by construction, T̂j ≤ Tj . On the event {Vn+j ≥ Tj}, there is also Vn+j ≥ T̂j . To prove the
inverse inequality, consider the following quantity

m

w(Xn+j) +
∑n

i=1 w(Xi)
·

w(Xn+j) +
∑n

i=1 w(Xi)1{Vi ≥ T̂j}
1{Vn+j ≥ T̂j}+

∑
k∈[m]\{j} 1{Vn+k ≥ T̂j}

=
m

w(Xn+j) +
∑n

i=1 w(Xi)
·
w(Xn+j)1{Vn+j ≥ T̂j}+

∑n
i=1 w(Xi)1{Vi ≥ T̂j}

1 +
∑

k∈[m]\{j} 1{Vn+k ≥ T̂j}
≤ α,

where the first step is because Vn+j ≥ Tj ≥ T̂j and the second step is by the definition of T̂j . We can
then conclude that Tj ≤ T̂j , and therefore Tj = T̂j .

In addition, define the set Ej to be the unordered collection of {Z1, Z2, . . . , Zn, Zn+j} (with repetitions
allowed). Then T̂j , formally constructed using each of Z1, . . . , Zn+m, actually only depends on the data
through Ej and {Zn+k}k∈[m]\{j}. That is, T̂j is agnostic to the ordering of the elements in Ej .

Using these facts, we can analyze the expectation of ej under the null Hj :

E[ej ] = E

[(
w(Xn+j) +

∑n
i=1 w(Xi)

)
1 {Vn+j ≥ Tj}

w(Xn+j) +
∑n

i=1 w(Xi)1 {Vi ≥ Tj}

]

= E

[ (
w(Xn+j) +

∑n
i=1 w(Xi)

)
1 {Vn+j ≥ Tj}

w(Xn+j)1 {Vn+j ≥ Tj}+
∑n

i=1 w(Xi)1 {Vi ≥ Tj}

]

= E

[ (
w(Xn+j) +

∑n
i=1 w(Xi)

)
1{Vn+j ≥ T̂j}

w(Xn+j)1{Vn+j ≥ T̂j}+
∑n

i=1 w(Xi)1{Vi ≥ T̂j}

]

= E

[
w(Xn+j) +

∑n
i=1 w(Xi)

w(Xn+j)1{Vn+j ≥ T̂j}+
∑n

i=1 w(Zi)1{Vi ≥ T̂j}

× E
[
1
{
Vn+j ≥ T̂j

} ∣∣∣∣ Ej , {Zn+k}k∈[m]\{j}

]]
.

(33)

The second equality technically adopts the notation 0/0 = 0. The third equality follows from the
equivalence of Tj and T̂j on the event 1 {Vn+j ≥ Tj} = 1 as discussed above. The last step uses the
tower property of conditional expectation.

Under the null Hj , we have following characterization of the conditional distribution of Zn+j given
Ej (Jin and Candès, 2023):

Zn+j | {Ej = z} ∼
∑

k∈[n]∪{n+j}

w(zk)∑n
i=1 w(zi) + w(zn+j)

· δzk , (34)

where δa denotes a point mass at a. In the above, z = {z1, z2, . . . , zn, zn+j} is a realization of Ej , with
zi = (xi, yi). From (34), it is immediate that for a constant t (conditional on Ej), P(Vn+j ≥ t | Ej) is
equal to the weighted sum of indicator random variables:

P(Vn+j ≥ t | Ej) =
∑

k∈[n]∪{n+j}

w(xk)1 {V (zk) ≥ t}
w(xn+j) +

∑n
i=1 w(xi)

. (35)

Since
E
[
1
{
Vn+j ≥ T̂j

}
| Ej , {Zn+k}k∈[m]\{j}

]
= P

(
Vn+j ≥ T̂j | Ej , {Zn+k}k∈[m]\{j}

)
,
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T̂j is constant conditioned on Ej and {Zn+k}k∈[m]\{j}, and Vn+j is independent of {Zn+k}k∈[m]\{j} by
assumption, we can use (35) to directly conclude that

E
[
1
{
Vn+j ≥ T̂j

}
| Ej , {Zn+k}k∈[m]\{j}

]
=

w(Xn+j)1{Vn+j ≥ T̂j}+
∑n

i=1 w(Xi)1{Vi ≥ T̂j}
w(Xn+j) +

∑n
i=1 w(Xi)

.

The above in conjunction with (33) implies that E[ej ] = 1.

A.8 Proof of Proposition 10

The proposition is immediate if we can conclude that Z̃1, Z̃2, . . . , Z̃n+m and Z1, Z2, . . . , Zn+m are jointly
equal in distribution conditioned on (Ej , {Zn+k}k∈[m]\{j}). Since Z̃n+k = Zn+k for k ̸= j by construction,
we only need to consider the joint distribution corresponding to the indices [n]∪ {n+ j} (conditional on
Ej , as the other test units were independently drawn).

Assuming the null Hj , we can write joint probability density function of Z1, . . . , Zn, Zn+j in terms
of the weight function w and the density function p of P (Tibshirani et al., 2019):

f(z1, z2, . . . , zn, zn+j) = w(xn+j)
∏

i∈[n]∪{n+j}

p(zi).
4

We can use this to calculate the joint conditional probabilities. Treat Ej as fixed and denote its elements
as {z1, z2, . . . , zn, zn+1}, without any particular order. Let Sn+1 denote all permutations of [n+1]. Then
for any permutation σ ∈ Sn+1, we have

P(Zn+j = zσ(n+1), Z1 = zσ(1), . . . , Zn = zσ(n) | Ej) =
w(xσ(n+1))

∏n+1
i=1 p(zi)∑

σ′∈Sn+1
w(xσ′(n+1))

∏n+1
i=1 p(zi)

=
w(xσ(n+1))∑n+1
i=1 w(xi) · n!

.

Meanwhile, the event {Z̃n+j = zσ(n+1), Z̃1 = zσ(1), . . . , Z̃n = zσ(n)} | Ej occurs when we first resample
Z̃n+j to be zσ(n+1) and subsequently assign {z1, z2, . . . , zn+1} \ {zσ(n+1)} to Z̃1, . . . , Z̃n uniformly at
random (without replacement). Thus,

P(Z̃n+j = zσ(n+1), Z̃1 = zσ(1), . . . , Z̃n = zσ(n) | Ej) =
w(xσ(n+1))∑n+1
i=1 w(xi)

· 1
n!
.

We conclude that the conditional joint distributions match, as desired. The i.i.d. property of the
resamples follows immediately by observing that the only randomness of the e-values, conditional on Sj ,
comes from the random (weighted) assignment to (Z̃n+j , Z̃1, . . . , Z̃n).

B Connection between eBH and WCS
For the outlier detation problem, the WCS procedure (Jin and Candès, 2023) with deterministic pruning
computes a weighted conformal p-value for each j ∈ [m] as in (24) and returns the selection set

RWCS =
{
j ∈ [m] : pj ≤

α

m
· |R̂j |, |R̂j | ≤ r∗

}
.

Above, R̂j is a “proxy” selection set, obtained via applying the BH procedure to (p
(j)
1 , . . . , p

(j)
j−1, 0, p

(j)
j+1, . . . , p

(j)
m ),

where for each ℓ ∈ [m],

p
(j)
ℓ =

∑
i∈[n] w(Xi) · 1{Vi ≥ Vn+ℓ}+ w(Xn+j) · 1{Vn+j ≥ Vn+ℓ}∑

i∈[n] w(Xi) + w(Xn+j)
,

and the threshold r∗ is defined via

r∗ = max

{
r ∈ [m] :

∑
j∈[m]

1
{
pj ≤ α|R̂j |/m, |R̂j | ≤ r

}
≥ r

}
.

4As in Tibshirani et al. (2019), we use the term “density function” loosely to refer to the Radon-Nikodym derivative
with respect to an arbitrary base measure.
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As pointed out by Jin and Candès (2023), RWCS can equivalently obtained by applying the BH procedure
to the e-values:

eWCS
j =

1{pj ≤ α|R̂j |/m}
α|R̂j |/m

, ∀j ∈ [m].

We are about to show that the weighted conformal e-value ej constructed in (26) satisfies ej ≥ eWCS
j

determistically. The following lemma is key to establish this connection.
Lemma 3. For any j ∈ [m], the following holds.

(1) On the event that {pj ≤ α|R̂j |/m}, R̂j = {ℓ ∈ [m] : Vn+ℓ ≥ Tj}.
(2) pj ≤ α|R̂j |/m if and only if Vn+j ≥ Tj;

Lemma 3 then implies that

ej =
(
w(Xn+j) +

n∑
i=1

w(Xi)
)
· 1{Vn+j ≥ Tj}∑

i∈n w(Xi)1{Vi ≥ Tj}+ w(Xn+j)

(a)
≥ m

α
· 1{Vn+j ≥ Tj}
|{ℓ ∈ [m] : Vn+ℓ ≥ Tj}|

(b)
=

m

α
· 1{pj ≤ α|R̂j |/m}

R̂j

= eWCS
j .

Above, step (a) follows from the definition of Tj and step (b) uses Lemma 3. We also note that step (a)
is often quite tight due to the choice of Tj .

Now, the only missing piece is the proof of Lemma 3, which we provide below.

Proof of Lemma 3.
(1) Fix j ∈ [m], and let k∗ = |R̂j | and ℓ∗ = |{ℓ ∈ [m] : Vn+ℓ ≥ Tj}|.

Suppose pj ≤ α|R̂j |/m. By the property of the BH procedure,

R̂j = {j} ∪ {ℓ ̸= j : p
(j)
ℓ ≤ αk∗/m} = {ℓ ∈ [m] : p

(j)
ℓ ≤ αk∗/m},

where the last step is because p
(j)
j = pj ≤ αk∗/m. Let p

(j)
(1) ≤ · · · ≤ p

(j)
(m) denote the ordered

p-values in an ascending order. Since the rank of p(j)ℓ is determined by Vn+ℓ, we have (with a slight
abuse of notation) that Vn+(1) ≥ Vn+(2) ≥ · · · ≥ Vn+(m).
Next, note that∑

i∈[n] w(Xi)1{Vi ≥ Vn+(k∗)}+ w(Xn+j)∑
ℓ∈[m] 1{Vn+ℓ ≥ Vn+(k∗)}

m

w(Xn+j) +
∑

i∈[n] w(Xi)
= p

(j)
(k∗)

m

k∗
≤ α. (36)

where the first inequality follows from the definition of p(j)k∗ and that
∑

ℓ∈[m] 1{Vn+ℓ ≥ Vn+(k∗)} =
k∗; the last step is due to the property of the BH procedure. Eqn. (36) implies that Vn+(k∗) ≥ Tj .
Therefore for any ℓ ∈ R̂j , Vn+ℓ ≥ Vn+(k∗) ≥ Tj , and R̂j ⊂ {ℓ ∈ [m] : Vn+ℓ ≥ Tj}.
Conversely, we can see that

p
(j)
(ℓ∗) =

∑
i∈[n] w(Xi)1{Vi ≥ Vn+(ℓ∗)}+ w(Xn+j)∑

i∈[n] w(Xi) + w(Xn+j)

(a)
=

∑
i∈[n] w(Xi)1{Vi ≥ Vn+(ℓ∗)}+ w(Xn+j)∑

ℓ∈m 1{Vn+ℓ ≥ Vn+(ℓ∗)}
m∑

i∈[n] w(Xi) + w(Xn+j)

ℓ∗

m

(b)
≤ αℓ∗

m
. (37)

Above, step (a) is because
∑

ℓ∈[m] 1{Vn+ℓ ≥ Vn+(ℓ∗)} = ℓ∗, and step (b) is because Vn+(ℓ∗) ≥ Tj .
As a result of (37) and the property of the BH procedure, we have ℓ∗ ≤ k∗. For any ℓ ∈ [m] such
that Vn+ℓ ≥ Tn+j , there is also pℓ ≤ p(ℓ∗) ≤ αk∗/m, implying that ℓ ∈ R̂j . Collectively, we have
R̂j = {ℓ ∈ [m] : Vn+ℓ ≥ Tj}.
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(2) When pj ≤ α|R̂j |/m, we have by (1) that pj ≤ αℓ∗

m . Suppose otherwise Vn+j < Tj . We can check
that ∑

i∈[n] w(Xi)1{Vi ≥ Vn+j}+ w(Xn+j)∑
ℓ∈[m] 1{Vn+ℓ ≥ Vn+j}

m∑
i∈[n] w(Xi) + w(Xn+j)

= pj ·
m∑

ℓ∈[m] 1{Vn+ℓ ≥ Vn+j}

≤ pj ·
m∑

ℓ∈[m] 1{Vn+ℓ ≥ Tj}

=
pjm

ℓ∗
≤ α.

The above implies that Vn+j ≥ Tj , which is a contradiction. Therefore, we conclude that Vn+j ≥ Tj .
Conversely, when Vn+j ≥ Tj , there is∑

i∈[n] w(Xi)1{Vi ≥ Vn+j}+ w(Xn+j)∑
ℓ∈[m] 1{Vn+ℓ ≥ Vn+j}

m∑
i∈[n] w(Xi) + w(Xn+j)

≤ α.

Rearranging the above inequality, we have

pj ≤
α

m

∑
ℓ∈[m]

1{Vn+ℓ ≥ Vn+j} ≤
αℓ∗

m
.

Recall that Eqn. (37) proves p(j)(ℓ∗) ≤ αℓ∗/m. By the property of the BH procedure, ℓ∗ ≤ |RBH(p
(j)
1 , . . . , p

(j)
m )| ≤

|R̂j |. As a result, we have pj ≤ α|R̂j |/m, completing the proof.
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