Dynamic Batch Learning in High-Dimensional Sparse Linear Contextual Bandits

Zhimei Ren

Informs Annual Meeting 2020

Collaborator

Background: Linear Contexual Bandits

- Sequential decision making problem.

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.
- Action space: K arms.

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.
- Action space: K arms.
- Each action is associated with a covariate vector.

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.
- Action space: K arms.
- Each action is associated with a covariate vector.
- A random reward is generated based on the chosen action.

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.
- Action space: K arms.
- Each action is associated with a covariate vector.
- A random reward is generated based on the chosen action.
- The expectation of the reward is a linear function of the covariate chosen.

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.
- Action space: K arms.
- Each action is associated with a covariate vector.
- A random reward is generated based on the chosen action.
- The expectation of the reward is a linear function of the covariate chosen.
- Target: maximize the cumulative rewards.

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.
- Action space: K arms.
- Each action is associated with a covariate vector.
- A random reward is generated based on the chosen action.
- The expectation of the reward is a linear function of the covariate chosen.
- Target: maximize the cumulative rewards.

Clinical trial

Recommendation system

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm				T					
1									
2									
3									
4									
5									
\vdots									
K									

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm			T						
1									
2									
3									
4									
5									
\vdots									
K									

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm			T						
1		\checkmark							
2		\checkmark							
3									
4									
5									
\vdots									

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm									
1									
2		\checkmark							
3	\checkmark								
4									
5									
\vdots									
K			\checkmark						

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm				T					
1		\checkmark							
2									
3									
4				\checkmark					
5									
\vdots									
K			\checkmark						

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm			\checkmark						
1									
2					\checkmark				
3									
4				\checkmark					
5									
\vdots									
K			\checkmark						

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm			\checkmark				\checkmark		
1									
2					\checkmark				
3									
4				\checkmark					
5									
\vdots									
K			\checkmark						

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm				T					
1					\checkmark				
2		\checkmark			\checkmark				
3	\checkmark								
4				\checkmark					
5									
\vdots							\checkmark		
K			\checkmark						

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm			\checkmark				\checkmark		
1									
2					\checkmark				
3									
4				\checkmark					
5								\checkmark	
\vdots							\checkmark		

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm				T					
1						\checkmark			
2		\checkmark			\checkmark				
3	\checkmark								\checkmark
4				\checkmark					
5								\checkmark	
\vdots						\checkmark			

Bandit Feedback: Batched Case

- The time horizon is split into M batches;
- The rewards can only be observed simultaneously at the end of each batch.

Bandit Feedback: Batched Case

- The time horizon is split into M batches;
- The rewards can only be observed simultaneously at the end of each batch.

	Time	1	2	3	4	5	6	7	\ldots
Arm						T			
1									
2									
3									
4									
5									
\vdots									
K									

Bandit Feedback: Batched Case

- The time horizon is split into M batches;
- The rewards can only be observed simultaneously at the end of each batch.

	Time	1	2	3	4	5	6	7	\ldots
Arm			\checkmark			T			
1		\checkmark							
2									
3									
4									
5									
\vdots									
K									

Bandit Feedback: Batched Case

- The time horizon is split into M batches;
- The rewards can only be observed simultaneously at the end of each batch.

	Time	1	2	3	4	5	6	7	\ldots
Arm				T					
1		\checkmark							
2					\checkmark				
3									
4				\checkmark					
5									
\vdots									
K			\checkmark						

Bandit Feedback: Batched Case

- The time horizon is split into M batches;
- The rewards can only be observed simultaneously at the end of each batch.

	Time	1	2	3	4	5	6	7	\ldots
Arm			\checkmark				\checkmark		
1		\checkmark							
2									
3					\checkmark				
4									\checkmark
5									
\vdots								\checkmark	
K			\checkmark				\checkmark		

Problem Setting

We study the sequential decision making problem in

- Linear contexual bandits;
- High-dimensional regime with sparse parameters;
- Batched observations.

Problem Setting

We study the sequential decision making problem in

- Linear contexual bandits;
- High-dimensional regime with sparse parameters;
- Batched observations.

Clinical trial

Recommendation system

Mathematical Formulation

- Time horizon T; (finite) number of arms K;

Mathematical Formulation

- Time horizon T; (finite) number of arms K;
- Each arm is associated with a d-dimensional feature context $x_{t, a}$;

Mathematical Formulation

- Time horizon T; (finite) number of arms K;
- Each arm is associated with a d-dimensional feature context $x_{t, a}$;
- If a decision maker selects action $a \in[K]$, a reward $r_{t, a} \in \mathbb{R}$ is incurred:

$$
r_{t, a}=x_{t, a}^{\top} \theta^{\star}+\xi_{t} .
$$

Mathematical Formulation

- Time horizon T; (finite) number of arms K;
- Each arm is associated with a d-dimensional feature context $x_{t, a}$;
- If a decision maker selects action $a \in[K]$, a reward $r_{t, a} \in \mathbb{R}$ is incurred:

$$
r_{t, a}=x_{t, a}^{\top} \theta^{\star}+\xi_{t} .
$$

- $\theta^{\star} \in \mathbb{R}^{d}$ is the underlying unknown parameter vector; $\left\{\xi_{t}\right\}_{t \geq 1}$ is a sequence of i.i.d. zero-mean 1 -sub-Gaussian random variables.

Mathematical Formulation

- Time horizon T; (finite) number of arms K;
- Each arm is associated with a d-dimensional feature context $x_{t, a}$;
- If a decision maker selects action $a \in[K]$, a reward $r_{t, a} \in \mathbb{R}$ is incurred:

$$
r_{t, a}=x_{t, a}^{\top} \theta^{\star}+\xi_{t} .
$$

- $\theta^{\star} \in \mathbb{R}^{d}$ is the underlying unknown parameter vector; $\left\{\xi_{t}\right\}_{t \geq 1}$ is a sequence of i.i.d. zero-mean 1 -sub-Gaussian random variables.
- Policy $\pi: \pi_{t}$ is determined by the observed rewards before the current batch.

Mathematical Formulation

- Time horizon T; (finite) number of arms K;
- Each arm is associated with a d-dimensional feature context $x_{t, a}$;
- If a decision maker selects action $a \in[K]$, a reward $r_{t, a} \in \mathbb{R}$ is incurred:

$$
r_{t, a}=x_{t, a}^{\top} \theta^{\star}+\xi_{t} .
$$

- $\theta^{\star} \in \mathbb{R}^{d}$ is the underlying unknown parameter vector; $\left\{\xi_{t}\right\}_{t \geq 1}$ is a sequence of i.i.d. zero-mean 1 -sub-Gaussian random variables.
- Policy $\pi: \pi_{t}$ is determined by the observed rewards before the current batch.
Regret:

$$
R(\pi) \triangleq \sum_{t=1}^{T}\left(\max _{a \in[K]} x_{t, a}^{\top} \theta^{\star}-x_{t, a_{t}}^{\top} \theta^{\star}\right)
$$

Mathematical Formulation

- Time horizon T; (finite) number of arms K;
- Each arm is associated with a d-dimensional feature context $x_{t, a}$;
- If a decision maker selects action $a \in[K]$, a reward $r_{t, a} \in \mathbb{R}$ is incurred:

$$
r_{t, a}=x_{t, a}^{\top} \theta^{\star}+\xi_{t} .
$$

- $\theta^{\star} \in \mathbb{R}^{d}$ is the underlying unknown parameter vector; $\left\{\xi_{t}\right\}_{t \geq 1}$ is a sequence of i.i.d. zero-mean 1 -sub-Gaussian random variables.
- Policy $\pi: \pi_{t}$ is determined by the observed rewards before the current batch.
Regret:

$$
R(\pi) \triangleq \sum_{t=1}^{T}\left(\max _{a \in[K]} x_{t, a}^{\top} \theta^{\star}-x_{t, a_{t}}^{\top} \theta^{\star}\right)
$$

Mathmatical Formulation

Batch constraint represented by a grid $t_{1}<t_{2}<\cdots<t_{M}=T$

Mathmatical Formulation

Batch constraint represented by a grid $t_{1}<t_{2}<\cdots<t_{M}=T$

- static grid: $\mathcal{T}=\left\{t_{1}, \cdots, t_{M}\right\}$ fixed in advance

Mathmatical Formulation

Batch constraint represented by a grid $t_{1}<t_{2}<\cdots<t_{M}=T$

- static grid: $\mathcal{T}=\left\{t_{1}, \cdots, t_{M}\right\}$ fixed in advance
- adaptive grid: the next grid point determined by historic data

Mathmatical Formulation

Batch constraint represented by a grid $t_{1}<t_{2}<\cdots<t_{M}=T$

- static grid: $\mathcal{T}=\left\{t_{1}, \cdots, t_{M}\right\}$ fixed in advance
- adaptive grid: the next grid point determined by historic data
- task: design policy + grid

Minimax Regret:

$$
R_{\operatorname{maxmin}}\left(K, M, T, s_{0}\right)=\inf _{\pi, \mathcal{T}} \sup _{\left\|\theta^{\star}\right\|_{2} \leq 1} \mathbb{E}\left[R_{T}(\pi)\right]
$$

Assumptions

$$
\left\|\theta^{\star}\right\|_{2} \leq 1
$$

Assumptions

- $\left\|\theta^{\star}\right\|_{2} \leq 1$.
- $\left\{x_{t, a}\right\}_{a \in[K]}$ i.i.d. drawn from a $K d$-dimensional joint distribution.

Assumptions

- $\left\|\theta^{\star}\right\|_{2} \leq 1$.
- $\left\{x_{t, a}\right\}_{a \in[K]}$ i.i.d. drawn from a $K d$-dimensional joint distribution.
- Sparsity: $d=\operatorname{Poly}(T) ;\left\|\theta^{\star}\right\|_{0} \leq s_{0}=O\left(T^{1-\varepsilon}\right)$.

Assumptions

- $\left\|\theta^{\star}\right\|_{2} \leq 1$.
- $\left\{x_{t, a}\right\}_{a \in[K]}$ i.i.d. drawn from a $K d$-dimensional joint distribution.
- Sparsity: $d=\operatorname{Poly}(T) ;\left\|\theta^{\star}\right\|_{0} \leq s_{0}=O\left(T^{1-\varepsilon}\right)$.
- Sub-Gaussianity: $x_{t, a}$ is 1 -sub-Gaussian marginally.

Assumptions

- $\left\|\theta^{\star}\right\|_{2} \leq 1$.
- $\left\{x_{t, a}\right\}_{a \in[K]}$ i.i.d. drawn from a $K d$-dimensional joint distribution.
- Sparsity: $d=\operatorname{Poly}(T) ;\left\|\theta^{\star}\right\|_{0} \leq s_{0}=O\left(T^{1-\varepsilon}\right)$.
- Sub-Gaussianity: $x_{t, a}$ is 1 -sub-Gaussian marginally.
- Restricted Bounded Density: There exists a constant $\gamma>0$, such that for each $a \in[K]$, any subset $S \subset[d]$ with $|S|=s_{0}$, and any unit vector $v \in R^{s_{0}}$, the probability density function of $v \top x_{t, a}(S)$ exists and is bounded above by $\gamma / 2$.

Assumptions

- $\left\|\theta^{\star}\right\|_{2} \leq 1$.
- $\left\{x_{t, a}\right\}_{a \in[K]}$ i.i.d. drawn from a $K d$-dimensional joint distribution.
- Sparsity: $d=\operatorname{Poly}(T) ;\left\|\theta^{\star}\right\|_{0} \leq s_{0}=O\left(T^{1-\varepsilon}\right)$.
- Sub-Gaussianity: $x_{t, a}$ is 1 -sub-Gaussian marginally.
- Restricted Bounded Density: There exists a constant $\gamma>0$, such that for each $a \in[K]$, any subset $S \subset[d]$ with $|S|=s_{0}$, and any unit vector $v \in R^{s_{0}}$, the probability density function of $v \top x_{t, a}(S)$ exists and is bounded above by $\gamma / 2$.
- Not too many arms: $K^{2} \log K=O\left(d / s_{0}\right)$.

Previous results

Two-arm batched bandits with static grids [PRCS'16]:

$$
R_{\operatorname{maxmin}}(2, M, T, 1)=\tilde{\Theta}\left(T^{\frac{1}{2-2^{1-M}}}\right)
$$

Multi-arm batched bandits with adaptive grids [GHRZ'19]

$$
R_{\operatorname{maxmin}}(K, M, T, 1)=\tilde{\Theta}\left(\sqrt{K} T^{\frac{1}{2-2^{1-M}}}\right)
$$

Batched contexual bandits in low dimensions [HZZBGY'20]

$$
R_{\operatorname{maxmin}}(M, T, d)=\tilde{\Theta}\left(\sqrt{d T}\left(T / d^{2}\right)^{\frac{1}{2\left(2^{M}-1\right)}}\right)
$$

Online contexual bandits in high dimensions (with margin conditions) [BB'20]

$$
R_{\operatorname{maxmin}}\left(T, T, s_{0}\right)=O\left(s_{0}^{2}(\log d+\log T)^{2}\right)
$$

[WWY'18]

$$
R_{\operatorname{maxmin}}\left(T, T, s_{0}\right)=O\left(s_{0}^{2}\left(\log d+s_{0}\right) \log T\right)
$$

Our results

- High-dimensional batched contexual bandits.
- Adaptive grid design.

Our results

- High-dimensional batched contexual bandits.
- Adaptive grid design.

When $M=O\left(\log \log \left(T / s_{0}\right)\right)$

$$
R_{\operatorname{maxmin}}\left(M, T, s_{0}\right)=\tilde{\Theta}\left(\sqrt{T s_{0}}\left(T / s_{0}\right)^{\frac{1}{2\left(2^{M}-1\right)}}\right)
$$

Our results

- High-dimensional batched contexual bandits.
- Adaptive grid design.

When $M=O\left(\log \log \left(T / s_{0}\right)\right)$

$$
R_{\operatorname{maxmin}}\left(M, T, s_{0}\right)=\tilde{\Theta}\left(\sqrt{T s_{0}}\left(T / s_{0}\right)^{\frac{1}{2\left(2^{M}-1\right)}}\right)
$$

Fully online

$$
R_{\operatorname{maxmin}}\left(T, T, s_{0}\right)=\tilde{\Theta}\left(\sqrt{T s_{0}}\right)
$$

Lower Bound

Consider the two-action setting where $x_{t, 1} \stackrel{i i d}{\sim} \mathcal{N}\left(0, I_{d}\right), x_{t, 2} \stackrel{i i d}{\sim} \mathcal{N}\left(0, I_{d}\right)$ and $x_{t, 1}$ is independent of $x_{t, 2}$. Then for any $M \leq T$ and any dynamic batch learning algorithm Alg, we have:

$$
\sup _{\theta^{\star}} \mathbb{E}_{\theta^{\star}}\left[R_{T}(\mathbf{A l g})\right] \geq c \cdot \max \left(M^{-2} \sqrt{T s_{0}}\left(\frac{T}{s_{0}}\right)^{\frac{1}{2\left(2^{M}-1\right)}}, \sqrt{T s_{0}}\right)
$$

where $c>0$ is a numerical constant independent of $\left(T, M, d, s_{0}\right)$.

Proof Sketch

- Lower bound the worst-case regret by a sequence of Bayesian regrets $\left\{Q_{m}\right\}_{m \in[m]}$, each of which corresponds to a particular prior on θ^{\star}.

Proof Sketch

- Lower bound the worst-case regret by a sequence of Bayesian regrets $\left\{Q_{m}\right\}_{m \in[m]}$, each of which corresponds to a particular prior on θ^{\star}.
- Given an Alg, we now define for each $m \in[M]$ the "bad" event $A_{m}=\left\{t_{m-1} \leq T_{m-1}<T_{m} \leq t_{m}\right\}$ (why?)

Proof Sketch

- Lower bound the worst-case regret by a sequence of Bayesian regrets $\left\{Q_{m}\right\}_{m \in[m]}$, each of which corresponds to a particular prior on θ^{\star}.
- Given an Alg, we now define for each $m \in[M]$ the "bad" event $A_{m}=\left\{t_{m-1} \leq T_{m-1}<T_{m} \leq t_{m}\right\}$ (why?)
- Show that at least one A_{m} occurs with a large enough probability under the corresponding prior.

Upper Bound

Under the assumptions and $M=O\left(\log \log \left(T / s_{0}\right)\right)$, we have

$$
\sup _{\theta^{\star}:\left\|\theta^{\star}\right\|_{2} \leq 1,\left\|\theta^{\star}\right\|_{0} \leq s_{0}} \mathbb{E}_{\theta^{\star}}\left[R_{T}(\mathrm{Alg})\right]=\tilde{O}\left(\sqrt{T s_{0}}\left(T / s_{0}\right)^{\frac{1}{2\left(2^{M}-1\right)}}\right)
$$

- $M=\log \log T$ batches sufficient for minimax regret

Algorithm

Lasso Batched Greedy Learning
Input Time horizon T; context dimension d; number of batches M; sparsity bound s_{0}.
Initialize $b=\Theta\left(\sqrt{T} \cdot\left(\frac{T}{s_{0}}\right)^{\frac{1}{2\left(2^{M}-1\right)}}\right) ; \hat{\theta}_{0}=\mathbf{0} \in \mathbb{R}^{d}$;
Static grid $\mathcal{T}=\left\{t_{1}, \ldots, t_{M}\right\}$, with $t_{1}=b \sqrt{s_{0}}$ and $t_{m}=b \sqrt{t_{m-1}}$ for $t \in\{2, \ldots, M\}$;
Partition each batch into M intervals evenly, i.e., $\left(t_{m-1}, t_{m}\right]=$ $\cup_{j=1}^{M} T_{m}^{(j)}$, for $m \in[M]$.

Algorithm

```
Lasso Batched Greedy Learning
    for \(m=1\) to \(M\) do
        for \(t=t_{m-1}+1\) to \(t_{m}\) do
            (a) Choose \(a_{t}=\operatorname{argmax} x_{t, a}^{\top} \hat{\theta}_{m-1}\) (break ties with lower action
                        \(a \in[K]\)
            index).
            (b) Incur reward \(r_{t, a_{t}}\).
        end for
        \(T^{(m)} \leftarrow \cup_{m^{\prime}=1}^{m} T_{m^{\prime}}^{(m)} ; \lambda_{m} \leftarrow 5 \sqrt{\frac{2 \log K(\log d+2 \log T)}{\left|T^{(m)}\right|}} ;\)
        Update \(\hat{\theta}_{m} \leftarrow \underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \frac{1}{2\left|T^{(m)}\right|} \sum_{t \in T^{(m)}}\left(r_{t, a_{t}}-x_{t, a_{t}}^{\top} \theta\right)^{2}+\lambda_{m}\|\theta\|_{1}\).
    end for
```


Conclusion

- Study the batched learning problem in high-dimensional linear contexual bandit setting.
- Develop a lower bound that characterizes the fundamental learning limits.
- Provide a algorithm that yields a matching upper bound.

Dynamic Batch Learning in High-Dimensional Sparse linear Contextual Bandits

(https://arxiv.org/abs/2008.11918)

