Dynamic Batch Learning in High-Dimensional Sparse Linear Contextual Bandits

Zhimei Ren

MOILS, November 30th 2020

Collaborator

Background: Linear Contexual Bandits

- Sequential decision making problem.

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.
- Action space: K arms.

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.
- Action space: K arms.
- Each action is associated with a covariate vector (in \mathbb{R}^{d}).

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.
- Action space: K arms.
- Each action is associated with a covariate vector (in \mathbb{R}^{d}).
- A random reward is generated based on the chosen action.

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.
- Action space: K arms.
- Each action is associated with a covariate vector (in \mathbb{R}^{d}).
- A random reward is generated based on the chosen action.
- The expectation of the reward is a linear function of the covariate.

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.
- Action space: K arms.
- Each action is associated with a covariate vector (in \mathbb{R}^{d}).
- A random reward is generated based on the chosen action.
- The expectation of the reward is a linear function of the covariate.
- Target: maximize the cumulative rewards.

Background: Linear Contexual Bandits

- Sequential decision making problem.
- Time horizon: T.
- Action space: K arms.
- Each action is associated with a covariate vector (in \mathbb{R}^{d}).
- A random reward is generated based on the chosen action.
- The expectation of the reward is a linear function of the covariate.
- Target: maximize the cumulative rewards.

Clinical trial

Recommendation system

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm				T					
1									
2									
3									
4									
5									
\vdots									
K									

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm			T						
1									
2									
3									
4									
5									
\vdots									
K									

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm			T						
1		\checkmark							
2		\checkmark							
3									
4									
5									
\vdots									

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm									
1									
2		\checkmark							
3	\checkmark								
4									
5									
\vdots									
K			\checkmark						

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm				T					
1		\checkmark							
2									
3									
4				\checkmark					
5									
\vdots									
K			\checkmark						

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm			\checkmark						
1									
2					\checkmark				
3									
4				\checkmark					
5									
\vdots									
K			\checkmark						

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm			\checkmark				\checkmark		
1									
2					\checkmark				
3									
4				\checkmark					
5									
\vdots									
K			\checkmark						

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm				T					
1					\checkmark				
2		\checkmark			\checkmark				
3	\checkmark								
4				\checkmark					
5									
\vdots							\checkmark		
K			\checkmark						

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm			\checkmark				\checkmark		
1									
2					\checkmark				
3									
4				\checkmark					
5								\checkmark	
\vdots							\checkmark		

Bandit feedback: online case

- The reward is immediately observed after an arm is pulled.

	Time	1	2	3	4	5	6	7	\ldots
Arm				T					
1						\checkmark			
2		\checkmark			\checkmark				
3	\checkmark								\checkmark
4				\checkmark					
5								\checkmark	
\vdots						\checkmark			

Limitations of online learning

It can be not feasible/practical to conduct fully online learning.


```
STANFORD
Stanford COVID-19 Vaccine Trial Enters Phase Three
Publishet October 31. 2020-Updmed on October 31, 2020.454:39 am
FiveThirtyEight
Politics Sports Science Podcasts Video
    We'd like to ask you a few questions about your visit to FiveThirtyEight. Clic
Election Update: A New Batch Of Iowa Polls Still Shows A Tight Race Between Sanders And Biden
```

${ }^{B y}$ Geoffrey Skelley
Filed under $\xrightarrow{2020 \text { Election }}$

```
100
```


Bandit Feedback: Batched Case

- The time horizon is split into M batches;
- The rewards can only be observed simultaneously at the end of each batch.

Bandit Feedback: Batched Case

- The time horizon is split into M batches;
- The rewards can only be observed simultaneously at the end of each batch.

Bandit Feedback: Batched Case

- The time horizon is split into M batches;
- The rewards can only be observed simultaneously at the end of each batch.

	Time	1	2	3	4	5	6	7	\ldots
Arm			T						
1		\checkmark							
2		\checkmark							
3	\checkmark								
4									
5									
\vdots									
K									

Bandit Feedback: Batched Case

- The time horizon is split into M batches;
- The rewards can only be observed simultaneously at the end of each batch.

	Time	1	2	3	4	5	6	7	\ldots
Arm			T						
1		\checkmark							
2		\checkmark			\checkmark				
3	\checkmark								
4				\checkmark					
5			\checkmark						
\vdots									
K			\checkmark						

Bandit Feedback: Batched Case

- The time horizon is split into M batches;
- The rewards can only be observed simultaneously at the end of each batch.

	Time	1	2	3	4	5	6	7	\ldots
Arm			T						
1		\checkmark			\checkmark				
2		\checkmark			\checkmark				
3	\checkmark								\checkmark
4				\checkmark					
5			\checkmark						
\vdots								\checkmark	
K			\checkmark				\checkmark		

Our Setting

Sequential decision making problem in

- Linear contexual bandits
- High-dimensional regime with sparse parameters
- Batched observations

Our Setting

Sequential decision making problem in

- Linear contexual bandits
- High-dimensional regime with sparse parameters
- Batched observations

Clinical trial

Recommendation system

Mathematical Formulation: Linear Contexual Bandits

- Time horizon T; number of arms K;

Mathematical Formulation: Linear Contexual Bandits

- Time horizon T; number of arms K;
- Each arm $a \in[K]$ is associated with a d-dimensional feature context $x_{t, a}$;

Mathematical Formulation: Linear Contexual Bandits

- Time horizon T; number of arms K;
- Each arm $a \in[K]$ is associated with a d-dimensional feature context $x_{t, a}$;
- The contexts $\left\{x_{t, a}\right\}_{a \in[K]}$ are i.i.d. drawn from a $K d$-dimensional joint distribution.

Mathematical Formulation: Linear Contexual Bandits

- Time horizon T; number of arms K;
- Each arm $a \in[K]$ is associated with a d-dimensional feature context $x_{t, a}$;
- The contexts $\left\{x_{t, a}\right\}_{a \in[K]}$ are i.i.d. drawn from a $K d$-dimensional joint distribution.
- If a decision maker selects action $a \in[K]$, a reward $r_{t, a} \in \mathbb{R}$ is incurred:

$$
r_{t, a}=x_{t, a}^{\top} \theta^{\star}+\xi_{t} .
$$

Mathematical Formulation: Linear Contexual Bandits

- Time horizon T; number of arms K;
- Each arm $a \in[K]$ is associated with a d-dimensional feature context $x_{t, a}$;
- The contexts $\left\{x_{t, a}\right\}_{a \in[K]}$ are i.i.d. drawn from a $K d$-dimensional joint distribution.
- If a decision maker selects action $a \in[K]$, a reward $r_{t, a} \in \mathbb{R}$ is incurred:

$$
r_{t, a}=x_{t, a}^{\top} \theta^{\star}+\xi_{t}
$$

- $\theta^{\star} \in \mathbb{R}^{d}$ is the underlying unknown parameter vector; $\left\{\xi_{t}\right\}_{t \geq 1}$ is a sequence of i.i.d. zero-mean 1 -sub-Gaussian random variables.

Mathematical Formulation: Linear Contexual Bandits

- Time horizon T; number of arms K;
- Each arm $a \in[K]$ is associated with a d-dimensional feature context $x_{t, a}$;
- The contexts $\left\{x_{t, a}\right\}_{a \in[K]}$ are i.i.d. drawn from a $K d$-dimensional joint distribution.
- If a decision maker selects action $a \in[K]$, a reward $r_{t, a} \in \mathbb{R}$ is incurred:

$$
r_{t, a}=x_{t, a}^{\top} \theta^{\star}+\xi_{t}
$$

- $\theta^{\star} \in \mathbb{R}^{d}$ is the underlying unknown parameter vector; $\left\{\xi_{t}\right\}_{t \geq 1}$ is a sequence of i.i.d. zero-mean 1 -sub-Gaussian random variables.
- Policy $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{T}\right) . \pi_{t}$ is determined by the observed rewards before the current batch.

Mathematical Formulation: Batch Constraint

- Number of batches M

Mathematical Formulation: Batch Constraint

- Number of batches M
- Batch constraint represented by a grid $t_{1}<t_{2}<\cdots<t_{M}=T$

Mathematical Formulation: Batch Constraint

- Number of batches M
- Batch constraint represented by a grid $t_{1}<t_{2}<\cdots<t_{M}=T$

Mathematical Formulation: Batch Constraint

- Number of batches M
- Batch constraint represented by a grid $t_{1}<t_{2}<\cdots<t_{M}=T$

Types of grids

- Static grid: $\mathcal{T}=\left\{t_{1}, \cdots, t_{M}\right\}$ fixed in advance

Mathematical Formulation: Batch Constraint

- Number of batches M
- Batch constraint represented by a grid $t_{1}<t_{2}<\cdots<t_{M}=T$

Types of grids

- Static grid: $\mathcal{T}=\left\{t_{1}, \cdots, t_{M}\right\}$ fixed in advance
- Adaptive grid: the next grid point determined by historic data

Mathematical Formulation: Batch Constraint

- Number of batches M
- Batch constraint represented by a grid $t_{1}<t_{2}<\cdots<t_{M}=T$

Types of grids

- Static grid: $\mathcal{T}=\left\{t_{1}, \cdots, t_{M}\right\}$ fixed in advance
- Adaptive grid: the next grid point determined by historic data

Mathematical Formulation: Batch Constraint

- Number of batches M
- Batch constraint represented by a grid $t_{1}<t_{2}<\cdots<t_{M}=T$

Types of grids

- Static grid: $\mathcal{T}=\left\{t_{1}, \cdots, t_{M}\right\}$ fixed in advance
- Adaptive grid: the next grid point determined by historic data

Task
Design policy + grid

Mathematical Formulation: Metric

$$
\begin{gathered}
\text { Regret } \\
R_{T}(\pi, \mathcal{T}) \triangleq \sum_{t=1}^{T}\left(\max _{a \in[K]} x_{t, a}^{\top} \theta^{\star}-x_{t, a_{t}}^{\top} \theta^{\star}\right)
\end{gathered}
$$

Mathematical Formulation: Metric

$$
\begin{gathered}
\text { Regret } \\
R_{T}(\pi, \mathcal{T}) \triangleq \sum_{t=1}^{T}\left(\max _{a \in[K]} x_{t, a}^{\top} \theta^{\star}-x_{t, a_{t}}^{\top} \theta^{\star}\right)
\end{gathered}
$$

Minimax Regret

$$
R_{\operatorname{maxmin}}\left(K, M, T, s_{0}\right)=\inf _{\pi, \mathcal{T}} \sup _{\left\|\theta^{\star}\right\|_{2} \leq 1,\left\|\theta^{\star}\right\|_{0} \leq s_{0}} \mathbb{E}\left[R_{T}(\pi, \mathcal{T})\right]
$$

Previous results: batched bandits in low dimensions

Two-arm batched bandits with static grids [PRCS'16]:

$$
R_{\operatorname{maxmin}}(2, M, T, 1)=\tilde{\Theta}\left(T^{\frac{1}{2-2^{1-M}}}\right)
$$

Multi-arm batched bandits with adaptive grids [GHRZ'19]

$$
R_{\operatorname{maxmin}}(K, M, T, 1)=\tilde{\Theta}\left(\sqrt{K} T^{\frac{1}{2-2^{1-M}}}\right)
$$

Batched contexual bandits in low dimensions [HzzBGY'20]

$$
R_{\operatorname{maxmin}}(M, T, d)=\tilde{\Theta}\left(\sqrt{d T}\left(T / d^{2}\right)^{\frac{1}{2\left(2^{M}-1\right)}}\right)
$$

Previous results: Online bandits in high dimensions

Online contexual bandits in high dimensions (with margin conditions) [BB'20]

$$
R_{\operatorname{maxmin}}\left(T, T, s_{0}\right)=O\left(s_{0}^{2}(\log d+\log T)^{2}\right)
$$

[WWY'18]

$$
R_{\operatorname{maxmin}}\left(T, T, s_{0}\right)=O\left(s_{0}^{2}\left(\log d+s_{0}\right) \log T\right)
$$

Our Contributions

- Study the batched contexual bandits in the high-dimensional setting
- Allow the grids to be designed adaptively

Our Contributions

- Study the batched contexual bandits in the high-dimensional setting
- Allow the grids to be designed adaptively

Theorem (R. and Zhou '20, informally)
Under some assumptions (to be specified later), when $M=O\left(\log \log \left(T / s_{0}\right)\right)$

$$
R_{\max \min }\left(M, T, s_{0}\right)=\tilde{\Theta}\left(\sqrt{T s_{0}}\left(T / s_{0}\right)^{\frac{1}{2\left(2^{M}-1\right)}}\right)
$$

When $M=\Omega\left(\log \log \left(T / s_{0}\right)\right)$,

$$
R_{\operatorname{maxmin}}\left(T, T, s_{0}\right)=\tilde{\Theta}\left(\sqrt{T s_{0}}\right)
$$

Assumption 1

Assumption (Sub-Gaussianity)

The marginal distribution of $x_{t, a}$ is 1-sub-Gaussian, $\forall a \in[k]$.

Assumption 2

Assumption (Restricted Bounded Density)

There \exists a constant $\gamma>0$, s.t., for each $a \in[K]$, any subset $S \subset[d]$ with $|S|=s_{0}$, and any unit vector $v \in R^{s_{0}}$, the probability density function of
$v \top x_{t, a}(S)$ exists and is bounded above by $\gamma / 2$.

- A wide range of distributions satisfies this assumption, e.g., (non-degenerate) Gaussians, uniform distribution.

Assumption 3 amd 4

Assumption (Sparsity in high-dimension)

The linear contextual bandits have:

- high-dimensional contexts: $d=\operatorname{Poly}(T)$;
- sparse parameters: $\left\|\theta^{\star}\right\|_{0} \leq s_{0}=O\left(T^{1-\varepsilon}\right)$, for some $\varepsilon>0$.

Assumption (Not too many arms)
The number of actions K satisfies $K^{2} \log K=O\left(d / s_{0}\right)$.

Lower Bound

Theorem (R. and Zhou '20)

Consider the two-action setting where $x_{t, 1} \stackrel{i i d}{\sim} \mathcal{N}\left(0, I_{d}\right), x_{t, 2} \stackrel{i i d}{\sim} \mathcal{N}\left(0, I_{d}\right)$ and $x_{t, 1}$ is independent of $x_{t, 2}$. Then for any $M \leq T$, any policy π and adaptive grid \mathcal{T}, we have:
$\sup _{\substack{\theta^{\star}:\| \|^{\star}\left\|_{0} \leq s_{0}\\\right\| \theta^{\star} \|_{2} \leq 1}} \mathbb{E}_{\theta^{\star}}\left[R_{T}(\pi, \mathcal{T})\right] \geq c \cdot \max \left(M^{-2} \sqrt{T s_{0}}\left(\frac{T}{s_{0}}\right)^{\frac{1}{2\left(2^{M}-1\right)}}, \sqrt{T s_{0}}\right)$
where $c>0$ is a numerical constant independent of $\left(T, M, d, s_{0}\right)$.

Lower Bound

Theorem (R. and Zhou '20)

Consider the two-action setting where $x_{t, 1} \stackrel{i i d}{\sim} \mathcal{N}\left(0, I_{d}\right), x_{t, 2} \stackrel{i i d}{\sim} \mathcal{N}\left(0, I_{d}\right)$ and $x_{t, 1}$ is independent of $x_{t, 2}$. Then for any $M \leq T$, any policy π and adaptive grid \mathcal{T}, we have:
$\sup _{\substack{\theta^{\star}:\| \|^{\star}\left\|_{0} \leq s_{0}\\\right\| \theta^{\star} \|_{2} \leq 1}} \mathbb{E}_{\theta^{\star}}\left[R_{T}(\pi, \mathcal{T})\right] \geq c \cdot \max \left(M^{-2} \sqrt{T s_{0}}\left(\frac{T}{s_{0}}\right)^{\frac{1}{2\left(2^{M}-1\right)}}, \sqrt{T s_{0}}\right)$
where $c>0$ is a numerical constant independent of $\left(T, M, d, s_{0}\right)$.

- When $M=O(\log \log T)$, the term $M^{-2} \sqrt{T s_{0}}\left(\frac{T}{s_{0}}\right)^{\frac{1}{2\left(2^{M}-1\right)}}$ dominates;

Lower Bound

Theorem (R. and Zhou '20)

Consider the two-action setting where $x_{t, 1} \stackrel{i i d}{\sim} \mathcal{N}\left(0, I_{d}\right), x_{t, 2} \stackrel{i i d}{\sim} \mathcal{N}\left(0, I_{d}\right)$ and $x_{t, 1}$ is independent of $x_{t, 2}$. Then for any $M \leq T$, any policy π and adaptive grid \mathcal{T}, we have:
$\sup _{\substack{\theta^{\star}:\| \|^{\star}\left\|_{0} \leq s_{0}\\\right\| \theta^{\star} \|_{2} \leq 1}} \mathbb{E}_{\theta^{\star}}\left[R_{T}(\pi, \mathcal{T})\right] \geq c \cdot \max \left(M^{-2} \sqrt{T s_{0}}\left(\frac{T}{s_{0}}\right)^{\frac{1}{2\left(2^{M}-1\right)}}, \sqrt{T s_{0}}\right)$
where $c>0$ is a numerical constant independent of $\left(T, M, d, s_{0}\right)$.

- When $M=O(\log \log T)$, the term $M^{-2} \sqrt{T s_{0}}\left(\frac{T}{s_{0}}\right)^{\frac{1}{2\left(2^{M}-1\right)}}$ dominates;
- When $M=\Omega(\log \log T)$, the term $\sqrt{T s_{0}}$ dominates.

Proof Idea: Fixed Hypothesis Testing

Construct several reward distributions such that:

- Large separation: if a policy performs well under one distribution, it will perform badly under others
- Indistinguishability: these reward distributions are information theoretically hard to distinguish given observed rewards

Proof Sketch

- Construct a sequence of prior distribution of $\theta^{\star}:\left\{Q_{m}\right\}_{m \in[m]}$

Proof Sketch

- Construct a sequence of prior distribution of $\theta^{\star}:\left\{Q_{m}\right\}_{m \in[m]}$
- Define the fixed grids: $T_{m}=\left\lfloor s_{0}\left(T / s_{0}\right)^{\frac{1-2^{-m}}{1-2-M}}\right\rfloor$, for $m \in[M]$

Proof Sketch

- Construct a sequence of prior distribution of $\theta^{\star}:\left\{Q_{m}\right\}_{m \in[m]}$
- Define the fixed grids: $T_{m}=\left\lfloor s_{0}\left(T / s_{0}\right)^{\frac{1-2^{-m}}{1-2-M}}\right\rfloor$, for $m \in[M]$
- Given a policy π and a grid design $\mathcal{T}=\left\{t_{1}, \ldots, t_{m}, \ldots, t_{M}\right\}$, we now define for each $m \in[M]$ the "bad" event $A_{m}=\left\{t_{m-1} \leq T_{m-1}<T_{m} \leq t_{m}\right\}$ (why?)

Proof Sketch

- Construct a sequence of prior distribution of $\theta^{\star}:\left\{Q_{m}\right\}_{m \in[m]}$
- Define the fixed grids: $T_{m}=\left\lfloor s_{0}\left(T / s_{0}\right)^{\frac{1-2^{-m}}{1-2-M}}\right\rfloor$, for $m \in[M]$
- Given a policy π and a grid design $\mathcal{T}=\left\{t_{1}, \ldots, t_{m}, \ldots, t_{M}\right\}$, we now define for each $m \in[M]$ the "bad" event $A_{m}=\left\{t_{m-1} \leq T_{m-1}<T_{m} \leq t_{m}\right\}$ (why?)
- Show that at least one A_{m} occurs with a large enough probability under the corresponding prior Q_{m}

Upper Bound

Theorem (R. and Zhou '20)

Under the assumptions and when $M=O\left(\log \log \left(T / s_{0}\right)\right)$, we have

$$
\sup _{\substack{\theta^{*}:\left\|\theta^{\star}\right\|_{2} \leq 1,\left\|\theta^{*}\right\|_{0} \leq s_{0}}} \mathbb{E}_{\theta^{*}}\left[R_{T}(\mathrm{Alg})\right]=\tilde{O}\left(\sqrt{T s_{0}}\left(T / s_{0}\right)^{\frac{1}{2\left(2^{M}-1\right)}}\right)
$$

- $M=\log \log T$ batches sufficient for achieving the online minimax regret $\tilde{O}\left(\sqrt{T s_{0}}\right)$ (up to logarithmic terms)
- The upper bound matches the lower bound (up to logarithmic terms)

Optimal Grid Design

- It suffices to use a static grid to achive the optimal regret under adaptive grids.

$$
\begin{aligned}
& \mathcal{T}=\left\{t_{1}, \ldots, t_{M}\right\} \text { with } \\
& \qquad t_{1}=a, t_{m}=\left\lfloor a \sqrt{t_{m-1}}\right\rfloor
\end{aligned}
$$

where a is chosen such that $t_{M}=T$.

Algorithm

Lasso Batched Greedy Learning
Input Time horizon T; context dimension d; number of batches M; sparsity bound s_{0}.
Initialize $b=\Theta\left(\sqrt{T} \cdot\left(\frac{T}{s_{0}}\right)^{\frac{1}{2\left(2^{M}-1\right)}}\right) ; \hat{\theta}_{0}=\mathbf{0} \in \mathbb{R}^{d}$;
Static grid $\mathcal{T}=\left\{t_{1}, \ldots, t_{M}\right\}$, with $t_{1}=b \sqrt{s_{0}}$ and $t_{m}=b \sqrt{t_{m-1}}$ for $t \in\{2, \ldots, M\}$;
Partition each batch into M intervals evenly, i.e., $\left(t_{m-1}, t_{m}\right]=$ $\cup_{j=1}^{M} T_{m}^{(j)}$, for $m \in[M]$.

Algorithm

```
Lasso Batched Greedy Learning
    for \(m=1\) to \(M\) do
        for \(t=t_{m-1}+1\) to \(t_{m}\) do
            (a) Choose \(a_{t}=\operatorname{argmax} x_{t, a}^{\top} \hat{\theta}_{m-1}\) (break ties with lower action
                        \(a \in[K]\)
            index).
            (b) Incur reward \(r_{t, a_{t}}\).
        end for
        \(T^{(m)} \leftarrow \cup_{m^{\prime}=1}^{m} T_{m^{\prime}}^{(m)} ; \lambda_{m} \leftarrow 5 \sqrt{\frac{2 \log K(\log d+2 \log T)}{\left|T^{(m)}\right|}} ;\)
        Update \(\hat{\theta}_{m} \leftarrow \underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \frac{1}{2\left|T^{(m)}\right|} \sum_{t \in T^{(m)}}\left(r_{t, a_{t}}-x_{t, a_{t}}^{\top} \theta\right)^{2}+\lambda_{m}\|\theta\|_{1}\).
    end for
```


Conclusion

- Study the batched learning problem in high-dimensional linear contexual bandit setting
- Develop a lower bound that characterizes the fundamental learning limits
- Provide a algorithm that yields a matching upper bound

Future work

- Beyond linearity
- Develop an algorithm that does not require the knowledge of the sparsity parameter s_{0}
- Tighten the bound (remove the factor of M^{-2})

Dynamic Batch Learning in High-Dimensional Sparse linear Contextual Bandits

(https://arxiv.org/abs/2008.11918)

