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Background: Linear Contexual Bandits

Sequential decision making problem.

Time horizon: T'.

Action space: K arms.

Each action is associated with a covariate vector (in R9).

A random reward is generated based on the chosen action.

The expectation of the reward is a linear function of the covariate.

Target: maximize the cumulative rewards.

Clinical trial Recommendation system



Bandit feedback: online case

» The reward is immediately observed after an arm is pulled.



Bandit feedback: online case

» The reward is immediately observed after an arm is pulled.

Time
Arm

b wnN =




Bandit feedback: online case

» The reward is immediately observed after an arm is pulled.

Time
Arm

b wnN =
N




Bandit feedback: online case

» The reward is immediately observed after an arm is pulled.

Time
Arm

b wnN =
N




Bandit feedback: online case

» The reward is immediately observed after an arm is pulled.

Time
Arm

b wnN =
N




Bandit feedback: online case

» The reward is immediately observed after an arm is pulled.

Time
Arm

b wnN =
N




Bandit feedback: online case

» The reward is immediately observed after an arm is pulled.

Time
Arm

b wnN =
N
<




Bandit feedback: online case

» The reward is immediately observed after an arm is pulled.

Time
Arm

b wnN =
N
<




Bandit feedback: online case

» The reward is immediately observed after an arm is pulled.

Time
Arm

b wnN =
N
<




Bandit feedback: online case

» The reward is immediately observed after an arm is pulled.

Time
Arm

b wnN =
N
<




Bandit feedback: online case

» The reward is immediately observed after an arm is pulled.

Time
Arm

b wnN =
N
<




Limitations of online learning

It can be not feasible/practical to conduct fully online learning.
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» The time horizon is split into M batches;

» The rewards can only be observed simultaneously at the end of each
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Time horizon T; number of arms K;

Each arm a € [K] is associated with a d-dimensional feature context
Tt,as

The contexts {4 }qe[k] are i.i.d. drawn from a K d-dimensional
joint distribution.

If a decision maker selects action a € [K], a reward 1, € R is
incurred:

T p*x
Tta = Ty o0 + &t

0* € R? is the underlying unknown parameter vector; {& =1 s a
sequence of i.i.d. zero-mean 1-sub-Gaussian random variables.

Policy m = (71, ma, ..., 7). m is determined by the observed
rewards before the current batch.
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Mathematical Formulation: Batch Constraint

» Number of batches M

» Batch constraint represented by a grid t; <to < - - <tpy =T

Types of grids

» Static grid: T = {t1,--- ,ta} fixed in advance

» Adaptive grid: the next grid point determined by historic data

Task

Design policy + grid
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Mathematical Formulation: Metric

Minimax Regret

E[Ry(m,T)]

Rinaxmin (K, M, T, s9) = inf sup
T 1|0% ]2 <1,][0% [0 <so
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Previous results: batched bandits in low dimensions

Two-arm batched bandits with static grids [PRCS'16]:
Runamin(2, M, T, 1) = ©(T77-77 )
Multi-arm batched bandits with adaptive grids [GHRZ'19]
Rumasemin (K, M, T, 1) = O(VET75=77)
Batched contexual bandits in low dimensions [HzzBGY'20]

Rmaxmin(zw, T, d) = é (ﬁ (T/dQ) m>

11



Previous results: Online bandits in high dimensions

Online contexual bandits in high dimensions (with margin conditions)
[BB'20]
Rmaxmin (Ta T7 50) =0 (302(10g d+ IOg T)Q)

[WWY'18]
Renaxmin(T, T, 50) = O (s0*(log d + s0) log T)

12
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Our Contributions

» Study the batched contexual bandits in the high-dimensional setting

» Allow the grids to be designed adaptively

Theorem (R. and Zhou '20, informally)

Under some assumptions (to be specified later), when
M = O(loglog(T//s0))

Renaerin(M, T 80) = © (/T (T/50) 7 ) ;

When M = Q(loglog(T/s0)),

Rmaxmin(T7 T7 SO) = é( V TS()).
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Assumption 1

Assumption (Sub-Gaussianity)

The marginal distribution of z , is 1-sub-Gaussian, Va € [k].

14



Assumption 2

Assumption (Restricted Bounded Density)

There 3 a constant v > 0, s.t., for each a € [K|, any subset S C [d] with
|S| = so, and any unit vector v € R*®, the probability density function of
vTxyq(S) exists and is bounded above by 7y /2.

» A wide range of distributions satisfies this assumption, e.g.,
(non-degenerate) Gaussians, uniform distribution.

15



Assumption 3 amd 4

Assumption (Sparsity in high-dimension)
The linear contextual bandits have:
» high-dimensional contexts: d = Poly(T);

> sparse parameters: ||6*]lo < so = O(T'~¢), for some e > 0.

Assumption (Not too many arms)

The number of actions K satisfies K?log K = O(d/so).

16



Lower Bound

Theorem (R. and Zhou '20)

Consider the two-action setting where x 1 = N(0,14), 40 = N(0,1,)
and x, 1 is independent of x 5. Then for any M < T, any policy m and
adaptive grid T, we have:

, T\ @5
sup  Eg« [Rp(m, T)] > c-max | M~*\/Tso | — .V T'so
O*ZHG*HQSS(), SO

0™ ll2<1

where ¢ > 0 is a numerical constant independent of (T, M, d, so).
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1
T\ 2(2M—1)
» When M = O(loglogT), the term M ~2y/Tsg (s)
0
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» When M = Q(loglogT), the term /T'sy dominates.
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Proof Idea: Fixed Hypothesis Testing

Construct several reward distributions such that:

» Large separation: if a policy performs well under one distribution, it
will perform badly under others

» Indistinguishability: these reward distributions are information
theoretically hard to distinguish given observed rewards

18



Proof Sketch

» Construct a sequence of prior distribution of 6*: {Qy, }rme[m]
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Proof Sketch

Construct a sequence of prior distribution of 6*: {Q }rme[m]

—m

Define the fixed grids: T,, = {SO(T/SO) = J for m € [M]

Given a policy 7 and a grid design T = {t1,...,tm,...,ta}, we
now define for each m € [M] the “bad” event
Am = {tm—l <Tpo1<Tp < tm} (Why7)

Show that at least one A,, occurs with a large enough probability
under the corresponding prior Q,,

19



Upper Bound

Theorem (R. and Zhou '20)
Under the assumptions and when M = O(loglog(T/s¢)), we have

~ 1
sup  Eg[Rr(Alg)] = O (\/Tia)(T/SO)TMfU)
0*:|0"||2<1,
16* lo <50

» M = loglogT batches sufficient for achieving the online minimax
regret O(y/T'sg) (up to logarithmic terms)

» The upper bound matches the lower bound (up to logarithmic terms)
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Optimal Grid Design

> It suffices to use a static grid to achive the optimal regret under
adaptive grids.

T = {tla-“th} with

1 =a,tym = La V4 tm—1J7

where a is chosen such that t); =T

21



Algorithm

Lasso Batched Greedy Learning
Input Time horizon T'; context dimension d; number of batches M;
sparsity bound sg.

Initialize b = © (ﬁ (Z) 2“"“”); 6y = 0 € RY;

Static grid 7 = {t1,...,ta}, with t; = b\/50 and t,, = b\/T,,—1 for
tef{2,...,M};

Partition each batch into M intervals evenly, i.e., (tm—1,tm] =
U}ilﬂ(rf), for m € [M].

22



Algorithm

Lasso Batched Greedy Learning

for m=1to M do
fort=t,,_1+1tot, do
(a) Choose a; = argmax x;, ,0,,_1 (break ties with lower action

aE[K] t,a
index).
(b) Incur reward 74 q,.
end for
(m) (m) 2log K (logd +2logT)
T —ur, T Am \/ 70| ;

R ' 1

Update 0, < aI;g%ldm W > terom (Tta, — a,o) + Am [6]]1-
€

end for

23



Conclusion

» Study the batched learning problem in high-dimensional linear
contexual bandit setting

» Develop a lower bound that characterizes the fundamental learning
limits

» Provide a algorithm that yields a matching upper bound

24



Future work

» Beyond linearity

» Develop an algorithm that does not require the knowledge of the
sparsity parameter sg

» Tighten the bound (remove the factor of M ~2)
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Dynamic Batch Learning in High-Dimensional
Sparse linear Contextual Bandits

(https://arxiv.org/abs/2008.11918)
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