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Background: Linear Contexual Bandits

I Sequential decision making problem.

I Time horizon: T .

I Action space: K arms.

I Each action is associated with a covariate vector (in Rd).

I A random reward is generated based on the chosen action.

I The expectation of the reward is a linear function of the covariate.

I Target: maximize the cumulative rewards.

Clinical trial Recommendation system
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Bandit feedback: online case

I The reward is immediately observed after an arm is pulled.
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Limitations of online learning

It can be not feasible/practical to conduct fully online learning.
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Bandit Feedback: Batched Case

I The time horizon is split into M batches;

I The rewards can only be observed simultaneously at the end of each
batch.
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Our Setting

Sequential decision making problem in

I Linear contexual bandits

I High-dimensional regime with sparse parameters

I Batched observations

Clinical trial Recommendation system
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Mathematical Formulation: Linear Contexual Bandits

I Time horizon T ; number of arms K;

I Each arm a ∈ [K] is associated with a d-dimensional feature context
xt,a;

I The contexts {xt,a}a∈[K] are i.i.d. drawn from a Kd-dimensional
joint distribution.

I If a decision maker selects action a ∈ [K], a reward rt,a ∈ R is
incurred:

rt,a = x>t,aθ
? + ξt.

I θ? ∈ Rd is the underlying unknown parameter vector; {ξt}t≥1 is a
sequence of i.i.d. zero-mean 1-sub-Gaussian random variables.

I Policy π = (π1, π2, . . . , πT ). πt is determined by the observed
rewards before the current batch.
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Mathematical Formulation: Batch Constraint

I Number of batches M

I Batch constraint represented by a grid t1 < t2 < · · · < tM = T

Types of grids

I Static grid: T = {t1, · · · , tM} fixed in advance

I Adaptive grid: the next grid point determined by historic data

Task

Design policy + grid
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Mathematical Formulation: Metric

Regret

RT (π, T )
∆
=

T∑
t=1

(
max
a∈[K]

x>t,aθ
? − x>t,atθ

?

)

Minimax Regret

Rmaxmin(K,M, T, s0) = inf
π,T

sup
‖θ?‖2≤1,‖θ?‖0≤s0

E [RT (π, T )]
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Previous results: batched bandits in low dimensions

Two-arm batched bandits with static grids [PRCS’16]:

Rmaxmin(2,M, T , 1) = Θ̃(T
1

2−21−M )

Multi-arm batched bandits with adaptive grids [GHRZ’19]

Rmaxmin(K,M, T , 1) = Θ̃(
√
KT

1

2−21−M )

Batched contexual bandits in low dimensions [HZZBGY’20]

Rmaxmin(M,T , d) = Θ̃
(√

dT
(
T/d2

) 1

2(2M−1)

)
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Previous results: Online bandits in high dimensions

Online contexual bandits in high dimensions (with margin conditions)
[BB’20]

Rmaxmin(T , T , s0) = O
(
s0

2(log d+ log T )2
)

[WWY’18]

Rmaxmin(T , T , s0) = O
(
s0

2(log d+ s0) log T
)
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Our Contributions

I Study the batched contexual bandits in the high-dimensional setting

I Allow the grids to be designed adaptively

Theorem (R. and Zhou ’20, informally)

Under some assumptions (to be specified later), when
M = O(log log(T/s0))

Rmaxmin(M,T, s0) = Θ̃
(√

Ts0 (T/s0)
1

2(2M−1)

)
;

When M = Ω(log log(T/s0)),

Rmaxmin(T, T, s0) = Θ̃(
√
Ts0).
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Assumption 1

Assumption (Sub-Gaussianity)

The marginal distribution of xt,a is 1-sub-Gaussian, ∀a ∈ [k].

14



Assumption 2

Assumption (Restricted Bounded Density)

There ∃ a constant γ > 0, s.t., for each a ∈ [K], any subset S ⊂ [d] with
|S| = s0, and any unit vector v ∈ Rs0 , the probability density function of
v>xt,a(S) exists and is bounded above by γ/2.

I A wide range of distributions satisfies this assumption, e.g.,
(non-degenerate) Gaussians, uniform distribution.
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Assumption 3 amd 4

Assumption (Sparsity in high-dimension)

The linear contextual bandits have:

I high-dimensional contexts: d = Poly(T );

I sparse parameters: ‖θ?‖0 ≤ s0 = O(T 1−ε), for some ε > 0.

Assumption (Not too many arms)

The number of actions K satisfies K2 logK = O(d/s0).

16



Lower Bound

Theorem (R. and Zhou ’20)

Consider the two-action setting where xt,1
iid∼ N (0, Id), xt,2

iid∼ N (0, Id)
and xt,1 is independent of xt,2. Then for any M ≤ T , any policy π and
adaptive grid T , we have:

sup
θ?:‖θ?‖0≤s0,
‖θ?‖2≤1

Eθ? [RT (π, T )] ≥ c ·max

(
M−2

√
Ts0

(
T

s0

) 1

2(2M−1)

,
√
Ts0

)

where c > 0 is a numerical constant independent of (T,M, d, s0).

I When M = O(log log T ), the term M−2
√
Ts0

(
T

s0

) 1

2(2M−1)

dominates;

I When M = Ω(log log T ), the term
√
Ts0 dominates.
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Proof Idea: Fixed Hypothesis Testing

Construct several reward distributions such that:

I Large separation: if a policy performs well under one distribution, it
will perform badly under others

I Indistinguishability: these reward distributions are information
theoretically hard to distinguish given observed rewards

18



Proof Sketch

I Construct a sequence of prior distribution of θ?: {Qm}m∈[m]

I Define the fixed grids: Tm =

⌊
s0(T/s0)

1−2−m

1−2−M

⌋
, for m ∈ [M ]

I Given a policy π and a grid design T = {t1, . . . , tm, . . . , tM}, we
now define for each m ∈ [M ] the “bad” event
Am = {tm−1 ≤ Tm−1 < Tm ≤ tm} (why?)

I Show that at least one Am occurs with a large enough probability
under the corresponding prior Qm
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Upper Bound

Theorem (R. and Zhou ’20)

Under the assumptions and when M = O(log log(T/s0)), we have

sup
θ?:‖θ?‖2≤1,
‖θ?‖0≤s0

Eθ? [RT (Alg)] = Õ
(√

Ts0(T/s0)
1

2(2M−1)

)

I M = log log T batches sufficient for achieving the online minimax
regret Õ(

√
Ts0) (up to logarithmic terms)

I The upper bound matches the lower bound (up to logarithmic terms)
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Optimal Grid Design

I It suffices to use a static grid to achive the optimal regret under
adaptive grids.

T = {t1, . . . , tM} with

t1 = a, tm =
⌊
a
√
tm−1

⌋
,

where a is chosen such that tM = T .

21



Algorithm

Lasso Batched Greedy Learning

Input Time horizon T ; context dimension d; number of batches M ;
sparsity bound s0.

Initialize b = Θ

(√
T ·
(
T
s0

) 1

2(2M−1)

)
; θ̂0 = 0 ∈ Rd;

Static grid T = {t1, . . . , tM}, with t1 = b
√
s0 and tm = b

√
tm−1 for

t ∈ {2, . . . ,M};
Partition each batch into M intervals evenly, i.e., (tm−1, tm] =

∪Mj=1T
(j)
m , for m ∈ [M ].
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Algorithm

Lasso Batched Greedy Learning

for m = 1 to M do
for t = tm−1 + 1 to tm do

(a) Choose at = argmax
a∈[K]

x>t,aθ̂m−1 (break ties with lower action

index).
(b) Incur reward rt,at .

end for

T (m) ← ∪mm′=1T
(m)
m′ ; λm ← 5

√
2 logK(log d+ 2 log T )

|T (m)|
;

Update θ̂m ← argmin
θ∈Rd

1

2|T (m)|
∑
t∈T (m)(rt,at − x>t,atθ)

2 + λm‖θ‖1.

end for
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Conclusion

I Study the batched learning problem in high-dimensional linear
contexual bandit setting

I Develop a lower bound that characterizes the fundamental learning
limits

I Provide a algorithm that yields a matching upper bound
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Future work

I Beyond linearity

I Develop an algorithm that does not require the knowledge of the
sparsity parameter s0

I Tighten the bound (remove the factor of M−2)
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Dynamic Batch Learning in High-Dimensional
Sparse linear Contextual Bandits

(https://arxiv.org/abs/2008.11918)
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