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Variable Selection

Setting

Explanatory Variables Response

(X1, X2, . . . , Xp) −−−−−−−−−−→ Y

Goal

I Detect the important variables w.r.t. the response.

I Control the proportion of the false discoveries.

0

10

20

30

0 2500 5000 7500 10000
SNPs

−
lo

g(
pv

al
)/

lo
g(

10
)

Figure: GWAS
Figure: MRI

Image from K. Pauly, G. Gold, RAD 220

3



Variable Selection

Setting

Explanatory Variables Response

(X1, X2, . . . , Xp) −−−−−−−−−−→ Y

Goal

I Detect the important variables w.r.t. the response.

I Control the proportion of the false discoveries.

0

10

20

30

0 2500 5000 7500 10000
SNPs

−
lo

g(
pv

al
)/

lo
g(

10
)

Figure: GWAS
Figure: MRI

Image from K. Pauly, G. Gold, RAD 220

3



Variable Selection

Setting

Explanatory Variables Response

(X1, X2, . . . , Xp) −−−−−−−−−−→ Y

Goal

I Detect the important variables w.r.t. the response.

I Control the proportion of the false discoveries.

0

10

20

30

0 2500 5000 7500 10000
SNPs

−
lo

g(
pv

al
)/

lo
g(

10
)

Figure: GWAS
Figure: MRI

Image from K. Pauly, G. Gold, RAD 220

3



Variable Selection

Setting

Explanatory Variables Response

(X1, X2, . . . , Xp) −−−−−−−−−−→ Y

Goal

I Detect the important variables w.r.t. the response.

I Control the proportion of the false discoveries.

0

10

20

30

0 2500 5000 7500 10000
SNPs

−
lo

g(
pv

al
)/

lo
g(

10
)

Figure: GWAS

Figure: MRI

Image from K. Pauly, G. Gold, RAD 220

3



Variable Selection

Setting

Explanatory Variables Response

(X1, X2, . . . , Xp) −−−−−−−−−−→ Y

Goal

I Detect the important variables w.r.t. the response.

I Control the proportion of the false discoveries.

0

10

20

30

0 2500 5000 7500 10000
SNPs

−
lo

g(
pv

al
)/

lo
g(

10
)

Figure: GWAS
Figure: MRI

Image from K. Pauly, G. Gold, RAD 220 3



Variable Selection with Side Information

Setting

Explanatory Variables Response

(X1, X2, . . . , Xp) −−−−−−−−−−→ Y

(U1, U2, . . . , Up)

Goal
I Detect the important variables w.r.t. the response with the help of

side information.

I Control the proportion of the false discoveries conditional on the side
information.
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Problem Formulation

I A variable Xj defined as null if the following hypothesis is true:

Hj : Xj |= Y | X−j .

I R: the number of discoveries.

I V : the number of false discoveries.

I Error criterion: False Discovery Rate

FDR
∆
= E

[
V

max(R, 1)

]
.

I Goal: detect as many non-null variables as possible while controlling
the FDR below level α.
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Variable Selection Procedure: Knockoffs (Review)

I Scientific paradigm:

n i.i.d. observations Selection set
Blackbox algorithm

(Xi1, Xi2, . . . , Xip, Yi) −−−−−−−−−−−−−−−→ S

I Knockoffs (Barber et al., 2015; Candès et al., 2018):

– a wrapper around the blackbox algorithms;
– produces a seletion set with FDR controlled below the target α.

I New paradigm:

n i.i.d. observations Knockoffs + Selection set
Blackbox algorithm

(Xi1, Xi2, . . . , Xip, Yi) −−−−−−−−−−−−−−−→ S
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Variable Selection Procedure: Knockoffs (Review)

I For each Xj , create a knockoff copy X̃j that serves as a “control”.

I Use the blackbox algorithm to assess the effect of Xj on Y and the

effect of X̃j on Y .

I Compare the effects.
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Knockoffs with Side Information: Adaptive Knockoffs

I A variable selection procedure that utilizes the side information.

I Controls the finite-sample FDR conditional on the side information.

I Improves the statistical power in simulations and real applications.
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Knockoffs with Side Information: Adaptive Knockoffs

Input: (X,Y )

I Construct a knockoff copy X̃.

I Apply our favorite blackbox algorithm A to (X, X̃, Y ) to generate a
feature importance score Zj and Z̃j for each Xj and X̃j :

(Z1, . . . , Zj , . . . , Zp, Z̃1, . . . , Z̃j , . . . , Z̃p) = A([X, X̃], Y ).

I Contruct for each j a feature importace statistic that contrasts Zj
and Z̃j :

Wj = Zj − Z̃j .

Lemma (Candès et al., ’18)

Conditional on (|W1|, . . . , |Wp|), the signs of the null Wj ’s, j ∈ H0, are
i.i.d. coin flips.
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Knockoffs with Side Information: Adaptive Knockoffs

− + −

πk

+

πk+1

− + + + + |W |

α = 0.2

I Knockoffs
Sequentially examines the hypotheses in an ordering determined by
Wj .

I Adaptive Knockoffs
Sequentially examines the hypotheses in an ordering determined by
(Wj , Uj).

Adaptive Knockoffs Algorithm: for steps k = 0, 1, 2 . . .
I Compute the estimated FDP among the unexamined hypotheses:

F̂DP(k) =
1 +#{j > k :Wπj

< 0}
#{j > k :Wπj > 0}

.

If F̂DP(k) ≤ α, stop the procedure; otherwise, proceed.

I Use a filter φk+1 to determine the next hypothesis to be examined:

πk+1 = φk+1.

I Output the unexamined features with positive feature importance
statistics.
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Adaptive knockoffs: FDR control

Requirement
At step k, the filter φk+1 is measurable w.r.t. the σ-field (denoted by
Fk) generated by the “available information”:

I Magnitude of all Wj ’s: |Wj | for j ∈ [p].

I Signs of the Wj ’s that have been examined: sign(Wπj
) for j ≤ k.

I Side information: Uj for j ∈ [p].

I The signs of the non-null Wj ’s: {sign(Wj)}j non-null.

I The number of positive and negative null Wj ’s in the unexamined
hypotheses.

Theorem (R. and Candès, ’20+)

Given X,Y, U , if X̃ is valid knockoff copy of X conditional on U , and if
the filter φk+1 is measurable w.r.t. Fk for k = 0, . . . , p− 1, adaptive
knockoffs controls the FDR below nominal level α (conditional on U).

11



Adaptive knockoffs: FDR control

Requirement
At step k, the filter φk+1 is measurable w.r.t. the σ-field (denoted by
Fk) generated by the “available information”:

I Magnitude of all Wj ’s: |Wj | for j ∈ [p].

I Signs of the Wj ’s that have been examined: sign(Wπj
) for j ≤ k.

I Side information: Uj for j ∈ [p].

I The signs of the non-null Wj ’s: {sign(Wj)}j non-null.

I The number of positive and negative null Wj ’s in the unexamined
hypotheses.

Theorem (R. and Candès, ’20+)

Given X,Y, U , if X̃ is valid knockoff copy of X conditional on U , and if
the filter φk+1 is measurable w.r.t. Fk for k = 0, . . . , p− 1, adaptive
knockoffs controls the FDR below nominal level α (conditional on U).

11



Adaptive knockoffs: FDR control

Requirement
At step k, the filter φk+1 is measurable w.r.t. the σ-field (denoted by
Fk) generated by the “available information”:

I Magnitude of all Wj ’s: |Wj | for j ∈ [p].

I Signs of the Wj ’s that have been examined: sign(Wπj
) for j ≤ k.

I Side information: Uj for j ∈ [p].

I The signs of the non-null Wj ’s: {sign(Wj)}j non-null.

I The number of positive and negative null Wj ’s in the unexamined
hypotheses.

Theorem (R. and Candès, ’20+)

Given X,Y, U , if X̃ is valid knockoff copy of X conditional on U , and if
the filter φk+1 is measurable w.r.t. Fk for k = 0, . . . , p− 1, adaptive
knockoffs controls the FDR below nominal level α (conditional on U).

11



Adaptive knockoffs: FDR control

Requirement
At step k, the filter φk+1 is measurable w.r.t. the σ-field (denoted by
Fk) generated by the “available information”:

I Magnitude of all Wj ’s: |Wj | for j ∈ [p].

I Signs of the Wj ’s that have been examined: sign(Wπj
) for j ≤ k.

I Side information: Uj for j ∈ [p].

I The signs of the non-null Wj ’s: {sign(Wj)}j non-null.

I The number of positive and negative null Wj ’s in the unexamined
hypotheses.

Theorem (R. and Candès, ’20+)

Given X,Y, U , if X̃ is valid knockoff copy of X conditional on U , and if
the filter φk+1 is measurable w.r.t. Fk for k = 0, . . . , p− 1, adaptive
knockoffs controls the FDR below nominal level α (conditional on U).

11



Adaptive knockoffs: FDR control

Requirement
At step k, the filter φk+1 is measurable w.r.t. the σ-field (denoted by
Fk) generated by the “available information”:

I Magnitude of all Wj ’s: |Wj | for j ∈ [p].

I Signs of the Wj ’s that have been examined: sign(Wπj
) for j ≤ k.

I Side information: Uj for j ∈ [p].

I The signs of the non-null Wj ’s: {sign(Wj)}j non-null.

I The number of positive and negative null Wj ’s in the unexamined
hypotheses.

Theorem (R. and Candès, ’20+)

Given X,Y, U , if X̃ is valid knockoff copy of X conditional on U , and if
the filter φk+1 is measurable w.r.t. Fk for k = 0, . . . , p− 1, adaptive
knockoffs controls the FDR below nominal level α (conditional on U).

11



Adaptive knockoffs: FDR control

Requirement
At step k, the filter φk+1 is measurable w.r.t. the σ-field (denoted by
Fk) generated by the “available information”:

I Magnitude of all Wj ’s: |Wj | for j ∈ [p].

I Signs of the Wj ’s that have been examined: sign(Wπj
) for j ≤ k.

I Side information: Uj for j ∈ [p].

I The signs of the non-null Wj ’s: {sign(Wj)}j non-null.

I The number of positive and negative null Wj ’s in the unexamined
hypotheses.

Theorem (R. and Candès, ’20+)

Given X,Y, U , if X̃ is valid knockoff copy of X conditional on U , and if
the filter φk+1 is measurable w.r.t. Fk for k = 0, . . . , p− 1, adaptive
knockoffs controls the FDR below nominal level α (conditional on U).

11



Adaptive knockoffs: FDR control

Requirement
At step k, the filter φk+1 is measurable w.r.t. the σ-field (denoted by
Fk) generated by the “available information”:

I Magnitude of all Wj ’s: |Wj | for j ∈ [p].

I Signs of the Wj ’s that have been examined: sign(Wπj
) for j ≤ k.

I Side information: Uj for j ∈ [p].

I The signs of the non-null Wj ’s: {sign(Wj)}j non-null.

I The number of positive and negative null Wj ’s in the unexamined
hypotheses.

Theorem (R. and Candès, ’20+)

Given X,Y, U , if X̃ is valid knockoff copy of X conditional on U , and if
the filter φk+1 is measurable w.r.t. Fk for k = 0, . . . , p− 1, adaptive
knockoffs controls the FDR below nominal level α (conditional on U).

11



Adaptive knockoffs: choices of filters

At step k, how should we use the available information (Fk) to construct
the filter φk+1?

|Wπ1 |
sπ1

. . . |Wπk
|

sπk

πk

|Wπk+1
|

πk+1

Example: GLM filter
I Model the probability of having a negative Wj via GLM:

P(sign(Wj) = −1||Wj |, Uj) =
eβ0+β1|Wj |+β2Uj

1 + eβ0+β1|Wj |+β2Uj
.

I Fit the model using available data.
I Pick the hypothesis with the highest probability of having a negative
Wj among the unexamined hypothesis, i.e.

φk+1 = argmax
j∈[p]\{π1,...,πk}

P(sign(Wj) = −1||Wj |, Uj)
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φk+1 = argmax
j∈[p]\{π1,...,πk}
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Adaptive Knockoffs: choices of filters

I Alternative models: GAM, Random Forest, Neural Network...

I The correctness of the model does not affect the FDR control (but
may affect the power).
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Numerical Simulations
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Application

We apply adaptive knockoffs to the WTCCC Crohn’s disease dataset.

I Inferential goal: discover which genetic variants are significant w.r.t.
Crohn’s disease among the British population.

I Side information: the summary statistics (p-values or z-values
corresponding to SNPs) reported by previous GWAS in Crohn’s
disease among other populations.

I Obtain summary statistics from GWAS in East Asia, Iran, Belgium,
Germany and the US.
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GWAS in Crohn’s disease

Study/Method Number of SNPs discovered
WTCCC. (2007) 9

Candès et al. (2018) 18
Sesia et al. (2018) 22.8
Adaptive knockoffs 33.3

Table: Number of SNPs discovered to be associated with Crohn’s disease by different methods.
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Knockoffs with side information

(https://arxiv.org/abs/2001.07835)
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