Knockoffs with Side Information

Zhimei Ren

Statistical Methods in Machine Learning Bernoulli-IMS One World Symposium 2020 August 24th-August 28th, 2020

Collaborator

Emmanuel Candès

Setting

Setting

Goal

• Detect the important variables w.r.t. the response.

Setting

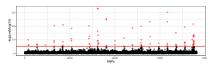
- Detect the important variables w.r.t. the response.
- Control the proportion of the false discoveries.

Setting

Goal

Detect the important variables w.r.t. the response.

Control the proportion of the false discoveries.



Setting

Goal

Detect the important variables w.r.t. the response.

Control the proportion of the false discoveries.

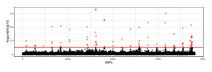
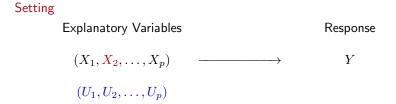
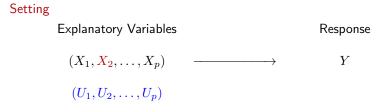


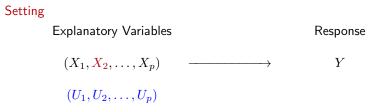
Figure: MRI



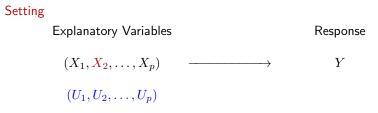


Goal

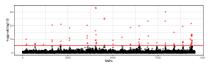
Detect the important variables w.r.t. the response with the help of side information.

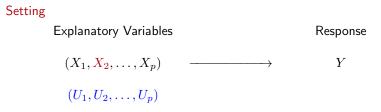


- Detect the important variables w.r.t. the response with the help of side information.
- Control the proportion of the false discoveries conditional on the side information.



- Detect the important variables w.r.t. the response with the help of side information.
- Control the proportion of the false discoveries conditional on the side information.





- Detect the important variables w.r.t. the response with the help of side information.
- Control the proportion of the false discoveries conditional on the side information.

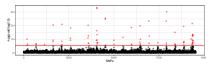


Figure: GWAS

Figure: MRI

• A variable X_j defined as *null* if the following hypothesis is true:

$$\mathcal{H}_j: X_j \perp\!\!\!\!\perp Y \mid X_{-j}.$$

• A variable X_j defined as *null* if the following hypothesis is true:

$$\mathcal{H}_j: X_j \perp\!\!\!\!\perp Y \mid X_{-j}.$$

 \blacktriangleright *R*: the number of discoveries.

• A variable X_j defined as *null* if the following hypothesis is true:

$$\mathcal{H}_j: X_j \perp\!\!\!\!\perp Y \mid X_{-j}.$$

- \blacktriangleright *R*: the number of discoveries.
- ► V: the number of false discoveries.

• A variable X_j defined as *null* if the following hypothesis is true:

$$\mathcal{H}_j: X_j \perp\!\!\!\!\perp Y \mid X_{-j}.$$

- ▶ *R*: the number of discoveries.
- ► V: the number of false discoveries.
- Error criterion: *False Discovery Rate*

$$\mathsf{FDR} \stackrel{\Delta}{=} \mathbb{E}\left[\frac{V}{\max(R,1)}\right].$$

• A variable X_j defined as *null* if the following hypothesis is true:

$$\mathcal{H}_j: X_j \perp\!\!\!\!\perp Y \mid X_{-j}.$$

- \blacktriangleright *R*: the number of discoveries.
- ► V: the number of false discoveries.
- Error criterion: False Discovery Rate

$$\mathsf{FDR} \stackrel{\Delta}{=} \mathbb{E}\left[\frac{V}{\max(R,1)}\right].$$

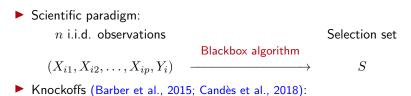
Goal: detect as many non-null variables as possible while controlling the FDR below level α.

Knockoffs (Barber et al., 2015; Candès et al., 2018):

- a wrapper around the blackbox algorithms;

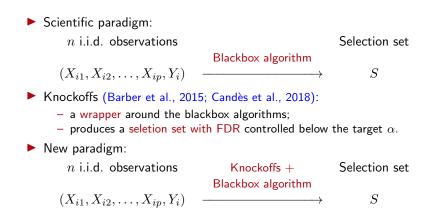
Knockoffs (Barber et al., 2015; Candès et al., 2018):

- a wrapper around the blackbox algorithms;
- produces a seletion set with FDR controlled below the target α .



- a wrapper around the blackbox algorithms;
- produces a seletion set with FDR controlled below the target α .

New paradigm:

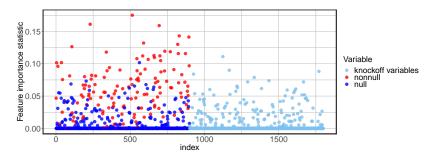


For each X_j , create a knockoff copy \tilde{X}_j that serves as a "control".

- For each X_j , create a knockoff copy \tilde{X}_j that serves as a "control".
- Use the blackbox algorithm to assess the effect of X_j on Y and the effect of \tilde{X}_j on Y.

- For each X_j , create a knockoff copy \tilde{X}_j that serves as a "control".
- Use the blackbox algorithm to assess the effect of X_j on Y and the effect of \tilde{X}_j on Y.
- Compare the effects.

- For each X_j , create a knockoff copy \tilde{X}_j that serves as a "control".
- Use the blackbox algorithm to assess the effect of X_j on Y and the effect of \tilde{X}_j on Y.
- Compare the effects.



- A variable selection procedure that utilizes the side information.
- Controls the finite-sample FDR conditional on the side information.
- Improves the statistical power in simulations and real applications.

Input: (X, Y)

• Construct a knockoff copy \tilde{X} .

Input: (X, Y)

- Construct a knockoff copy \tilde{X} .
- ▶ Apply our favorite blackbox algorithm A to (X, X, Y) to generate a feature importance score Z_j and Z̃_j for each X_j and X̃_j:

 $(Z_1,\ldots,Z_j,\ldots,Z_p,\tilde{Z}_1,\ldots,\tilde{Z}_j,\ldots,\tilde{Z}_p) = \mathcal{A}([X,\tilde{X}],Y).$

Input: (X, Y)

- Construct a knockoff copy \tilde{X} .
- Apply our favorite blackbox algorithm A to (X, X, Y) to generate a feature importance score Z_j and Z̃_j for each X_j and X̃_j:

$$(Z_1,\ldots,Z_j,\ldots,Z_p,\tilde{Z}_1,\ldots,\tilde{Z}_j,\ldots,\tilde{Z}_p) = \mathcal{A}([X,\tilde{X}],Y).$$

Contruct for each j a feature importace statistic that contrasts Z_j and Z̃_j:

$$W_j = Z_j - \tilde{Z}_j.$$

Input: (X, Y)

- Construct a knockoff copy \tilde{X} .
- Apply our favorite blackbox algorithm A to (X, X, Y) to generate a feature importance score Z_j and Z̃_j for each X_j and X̃_j:

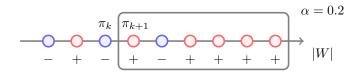
$$(Z_1,\ldots,Z_j,\ldots,Z_p,\tilde{Z}_1,\ldots,\tilde{Z}_j,\ldots,\tilde{Z}_p) = \mathcal{A}([X,\tilde{X}],Y).$$

Contruct for each j a feature importace statistic that contrasts Z_j and Z̃_j:

$$W_j = Z_j - \tilde{Z}_j.$$

Lemma (Candès et al., '18)

Conditional on $(|W_1|, \ldots, |W_p|)$, the signs of the null W_j 's, $j \in \mathcal{H}_0$, are *i.i.d.* coin flips.

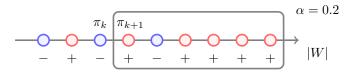


Knockoffs

Sequentially examines the hypotheses in an ordering determined by W_j .

Adaptive Knockoffs

Sequentially examines the hypotheses in an ordering determined by (W_j, U_j) .

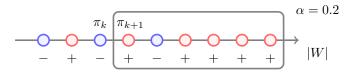


Adaptive Knockoffs Algorithm: for steps k = 0, 1, 2...

Compute the estimated FDP among the unexamined hypotheses:

$$\widehat{ ext{FDP}}(k) = rac{1 + \#\{j > k : W_{\pi_j} < 0\}}{\#\{j > k : W_{\pi_j} > 0\}}$$

If $\widehat{FDP}(k) \leq \alpha$, stop the procedure; otherwise, proceed.



Adaptive Knockoffs Algorithm: for steps k = 0, 1, 2...

Compute the estimated FDP among the unexamined hypotheses:

$$\widehat{ ext{FDP}}(k) = rac{1+\#\{j>k: W_{\pi_j} < 0\}}{\#\{j>k: W_{\pi_j} > 0\}}$$

If $\widehat{FDP}(k) \leq \alpha$, stop the procedure; otherwise, proceed.

• Use a *filter* ϕ_{k+1} to determine the next hypothesis to be examined:

$$\pi_{k+1} = \phi_{k+1}.$$



Adaptive Knockoffs Algorithm: for steps k = 0, 1, 2...

Compute the estimated FDP among the unexamined hypotheses:

$$\widehat{ ext{FDP}}(k) = rac{1+\#\{j>k: W_{\pi_j} < 0\}}{\#\{j>k: W_{\pi_j} > 0\}}$$

If $\widehat{FDP}(k) \leq \alpha$, stop the procedure; otherwise, proceed.

• Use a *filter* ϕ_{k+1} to determine the next hypothesis to be examined:

$$\pi_{k+1} = \phi_{k+1}.$$

 Output the unexamined features with positive feature importance statistics.

Requirement

Requirement

At step k, the filter ϕ_{k+1} is measurable w.r.t. the σ -field (denoted by \mathcal{F}_k) generated by the "available information":

• Magnitude of all W_j 's: $|W_j|$ for $j \in [p]$.

Requirement

- Magnitude of all W_j 's: $|W_j|$ for $j \in [p]$.
- Signs of the W_j 's that have been examined: $sign(W_{\pi_j})$ for $j \leq k$.

Requirement

- Magnitude of all W_j 's: $|W_j|$ for $j \in [p]$.
- Signs of the W_j 's that have been examined: $sign(W_{\pi_j})$ for $j \leq k$.
- Side information: U_j for $j \in [p]$.

Requirement

- Magnitude of all W_j 's: $|W_j|$ for $j \in [p]$.
- Signs of the W_j 's that have been examined: $sign(W_{\pi_j})$ for $j \leq k$.
- Side information: U_j for $j \in [p]$.
- The signs of the non-null W_j 's: $\{\operatorname{sign}(W_j)\}_{j \text{ non-null}}$.

Requirement

- Magnitude of all W_j 's: $|W_j|$ for $j \in [p]$.
- Signs of the W_j 's that have been examined: $sign(W_{\pi_j})$ for $j \leq k$.
- Side information: U_j for $j \in [p]$.
- The signs of the non-null W_j 's: $\{\operatorname{sign}(W_j)\}_{j \text{ non-null}}$.
- The number of positive and negative null W_j's in the unexamined hypotheses.

Requirement

At step k, the filter ϕ_{k+1} is measurable w.r.t. the σ -field (denoted by \mathcal{F}_k) generated by the "available information":

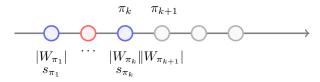
- Magnitude of all W_j 's: $|W_j|$ for $j \in [p]$.
- Signs of the W_j 's that have been examined: $sign(W_{\pi_j})$ for $j \leq k$.
- Side information: U_j for $j \in [p]$.
- The signs of the non-null W_j 's: $\{\operatorname{sign}(W_j)\}_{j \text{ non-null}}$.
- The number of positive and negative null W_j's in the unexamined hypotheses.

Theorem (R. and Candès, '20+)

Given X, Y, U, if \tilde{X} is valid knockoff copy of X conditional on U, and if the filter ϕ_{k+1} is measurable w.r.t. \mathcal{F}_k for $k = 0, \ldots, p-1$, adaptive knockoffs controls the FDR below nominal level α (conditional on U).

At step k, how should we use the available information (\mathcal{F}_k) to construct the filter ϕ_{k+1} ?

At step k, how should we use the available information (\mathcal{F}_k) to construct the filter ϕ_{k+1} ?



At step k, how should we use the available information (\mathcal{F}_k) to construct the filter ϕ_{k+1} ?

Example: GLM filter

• Model the probability of having a negative W_j via GLM:

$$\mathbb{P}(\operatorname{sign}(W_j) = -1 ||W_j|, U_j) = \frac{e^{\beta_0 + \beta_1 |W_j| + \beta_2 U_j}}{1 + e^{\beta_0 + \beta_1 |W_j| + \beta_2 U_j}}.$$

At step k, how should we use the available information (\mathcal{F}_k) to construct the filter ϕ_{k+1} ?

Example: GLM filter

• Model the probability of having a negative W_j via GLM:

$$\mathbb{P}(\text{sign}(W_j) = -1 ||W_j|, U_j) = \frac{e^{\beta_0 + \beta_1 |W_j| + \beta_2 U_j}}{1 + e^{\beta_0 + \beta_1 |W_j| + \beta_2 U_j}}.$$

Fit the model using available data.

At step k, how should we use the available information (\mathcal{F}_k) to construct the filter ϕ_{k+1} ?

Example: GLM filter

• Model the probability of having a negative W_j via GLM:

$$\mathbb{P}(\text{sign}(W_j) = -1||W_j|, U_j) = \frac{e^{\beta_0 + \beta_1|W_j| + \beta_2 U_j}}{1 + e^{\beta_0 + \beta_1|W_j| + \beta_2 U_j}}.$$

Fit the model using available data.

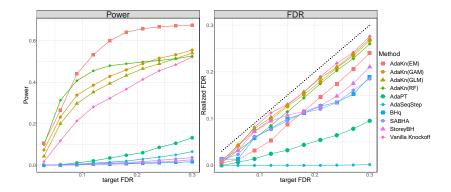
Pick the hypothesis with the highest probability of having a negative W_j among the unexamined hypothesis, i.e.

$$\phi_{k+1} = \operatorname*{argmax}_{j \in [p] \setminus \{\pi_1, \dots, \pi_k\}} \mathbb{P}(\operatorname{sign}(W_j) = -1 ||W_j|, U_j)$$

Alternative models: GAM, Random Forest, Neural Network...

- Alternative models: GAM, Random Forest, Neural Network...
- The correctness of the model does not affect the FDR control (but may affect the power).

Numerical Simulations



We apply adaptive knockoffs to the WTCCC Crohn's disease dataset.

We apply adaptive knockoffs to the WTCCC Crohn's disease dataset.

Inferential goal: discover which genetic variants are significant w.r.t. Crohn's disease among the British population.

We apply adaptive knockoffs to the WTCCC Crohn's disease dataset.

- Inferential goal: discover which genetic variants are significant w.r.t. Crohn's disease among the British population.
- Side information: the summary statistics (p-values or z-values corresponding to SNPs) reported by previous GWAS in Crohn's disease among other populations.

We apply adaptive knockoffs to the WTCCC Crohn's disease dataset.

- Inferential goal: discover which genetic variants are significant w.r.t. Crohn's disease among the British population.
- Side information: the summary statistics (p-values or z-values corresponding to SNPs) reported by previous GWAS in Crohn's disease among other populations.
- Obtain summary statistics from GWAS in East Asia, Iran, Belgium, Germany and the US.

GWAS in Crohn's disease

Study/Method	Number of SNPs discovered
WTCCC. (2007)	9
Candès et al. (2018)	18
Sesia et al. (2018)	22.8
Adaptive knockoffs	33.3

Table: Number of SNPs discovered to be associated with Crohn's disease by different methods.

References I

- Barber, R. F., Candès, E. J., et al. (2015). Controlling the false discovery rate via knockoffs. *The Annals of Statistics*, 43(5):2055–2085.
- Candès, E., Fan, Y., Janson, L., and Lv, J. (2018). Panning for gold:'model-x'knockoffs for high dimensional controlled variable selection series b statistical methodology.
- Sesia, M., Sabatti, C., and Candès, E. (2018). Gene hunting with hidden markov model knockoffs. *Biometrika*.
- WTCCC. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature*, 447(7145):661.

Knockoffs with side information

(https://arxiv.org/abs/2001.07835)